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Order-parameter flow in the SK spin-glass: II. Inclusion of
microscopic memory effects

S N Laughton, A C C Coolen† and D Sherrington
Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford
OX1 3NP, UK

Received 26 July 1995

Abstract. We develop further a recent dynamical replica theory to describe the dynamics of the
Sherrington–Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order
parameters. We show how microscopic memory effects can be included in the formalism through
the introduction of a dynamic order parameter function: the joint spin-field distribution. The
resulting formalism describes very accurately the relaxation phenomena observed in numerical
simulations, including the typical overall slowing down of the flow that was missed by the
previous simple two-parameter theory. The advanced dynamical replica theory is either exact
or a very good approximation.

1. Introduction

In a previous paper [1] we introduced a theory to describe the Glauber dynamics of the
Sherrington–Kirkpatrick (SK) [2] spin-glass model in terms of deterministic flow equations
for two macroscopic state variables: the magnetizationm and the spin-glass contributionr
to the energy (for a more general discussion of theSK model and of the relevant literature on
its dynamics we refer to [1]). The theory is based on the removal of microscopic memory
effects: the only ‘knowledge’ the system is assumed to have of its past is the value of
the macroscopic state(m, r). In fact any acceptable macroscopic dynamical theory for the
SK model must contain as dynamical variables, either explicitly or implicitly, at least the
magnetizationm (which is the relevant observable for many typical spin-glass remanence
phenomena) and the total energy of the system (in order for the theory to reproduce the
correct equilibrium equations). Since for theSK model the energy per spin is a simple
function of the macroscopic state vector(m, r), the theory of [1] can be seen as the simplest
two-parameter dynamical theory for theSK model that has the properties of being exact for
short times (upon choosing appropriate initial conditions) and in equilibrium.

At a technical level, the resulting formalism is a dynamical replica theory, which at
fixed-points of the macroscopic flow reduces to the standard equilibrium replica theory,
including replica symmetry breaking (RSB) à la Parisi [3] if it occurs. This is in contrast
to an alternative formalism based on path-integral methods (see e.g. [4, 5]), where it is not
yet known how to recover the standard equilibrium results inRSB situations. In fact, the
potential of the present theory to provide the link between equilibrium replica theory and
the description in terms of correlation and response functions (once the hitherto neglected
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microscopic memory effects have been incorporated), we regard as one of its most interesting
features.

In [1] the actual macroscopic flow equations were determined explicitly only within the
replica-symmetry (RS) ansatz. TheRSversion of the theory was quite successful at predicting
the flow trajectories in the(m, r) plane, but also exhibited clear deviations in terms of the
long-term temporal dependence of the macroscopic state variablesm andr. These are partly
due to the elimination from the dynamical equations of microscopic memory effects, and
partly an artefact of theRS ansatz. The latter cause for deviations can be dealt with by
allowing for a breaking of replica symmetry, following Parisi’sRSB scheme [3]; although
technically non-trivial, this can be seen as a straightforward generalization of the theory
(dynamical RSB within the present formalism will be the subject of a subsequent paper
[6]). Here, however, we concentrate on the more subtle question of how to incorporate
more complete microscopic memory effects, i.e. on how to generalize the ideas in [1] to a
situation where a macroscopic state specifies the details of the underlying microscopic states
to a much higher degree. We will show that, by considering as the appropriate macroscopic
dynamical observable the joint spin-field distribution, one can indeed follow the steps in [1]
and arrive at a dynamic replica theory which not only inherits by construction the exactness
of the previous (simple) two-parameter theory in the temporal limitst → 0 andt → ∞, but
also describes the simulation experiments accurately, as far as our (limited) data allow us to
conclude. The philosophy of our approach resembles the one proposed by Horner [7], who
also derived a closed diffusion equation for the evolution of the joint spin-field distribution.
However, at the technical level of the closure procedure there are important differences.
The present theory is not only exact for short times (as is [7]), but also in equilibrium, in
the sense that thefull RSB equations are recovered. More importantly, it is constructed in
such a way that it will produce exact dynamic equations if the joint spin-field distribution
indeed turns out to constitute a closed level of description.

This paper is organized as follows. First we generalize the theory of [1] to the case of
an arbitrary set of macroscopic observables, and derive constraints on the allowed choices
for such a set, by requiring exactness in specific limits. We then derive a diffusion equation
for the joint spin-field distribution, which generates a dynamical replica theory. For further
explicit analysis, the relevant equations are simplified by making theRS ansatz, and their
predictions are compared to the results of numerical simulations. We close the paper with
a discussion of our results and their implications.

2. Dynamics and replicas

2.1. Definitions and macroscopic laws

The SK spin-glass model [2] consists ofN Ising spinsσi ∈ {−1, 1} with infinite-range
exchange interactionsJij :

Jij = 1

N
J0 + 1√

N
Jzij (i < j) (1)

where the quantitieszij , which represent quenched disorder, are drawn independently at
random from a Gaussian distribution with zero mean and unit variance and then frozen
during the spin dynamics. The evolution in time of the microscopic probability distribution
pt(σ) is taken to be of the Glauber form described by the master equation

d

dt
pt (σ) =

N∑
k=1

[pt(Fkσ)wk(Fkσ) − pt(σ)wk(σ)] (2)
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in which Fk is a spin-flip operatorFk8(σ) ≡ 8(σ1, . . . ,−σk, . . . , σN) and the transition
rateswk(σ) and the local alignment fieldshi(σ) are

wk(σ) = 1
2[1 − σk tanh[βhk(σ)]] hi(σ) =

∑
j 6=i

Jij σj + θ (3)

where β is the inverse temperature. This leads asymptotically to the required standard
Boltzmann equilibrium distributionp∞(σ) ∼ exp[−βH(σ)], with the conventional
Hamiltonian

H(σ) = −
∑
i<j

σiJijσj − θ
∑

i

σi . (4)

We now turn to the evolution in time of any given set of` macroscopic observables
Ω(σ) = (�1(σ), . . . , �`(σ)), described by the macroscopic probability distribution
Pt (Ω) = ∑

σ pt(σ)δ[Ω − Ω(σ)]. We insert the master equation (2), and expand the
result in powers of the ‘discrete derivatives’1

µ

i (σ) = �µ(Fiσ) − �µ(σ), which gives

d

dt
Pt (Ω) = −

∑̀
µ=1

∂

∂�µ

{
Pt (Ω)

〈∑
i

wi(σ)1
µ

i (σ)

〉
Ω,t

}

+1

2

∑̀
µν=1

∂2

∂�µ∂�ν

{
Pt (Ω)

〈∑
i

wi(σ)1
µ

i (σ)1ν
i (σ)

〉
Ω,t

}
+ O(N`313) (5)

where we introduced the sub-shell, or conditional, average

〈f (σ)〉Ω,t =
∑

σ pt(σ)δ[Ω − Ω(σ)]f (σ)∑
σ pt(σ)δ[Ω − Ω(σ)]

.

If the second (diffusion) term, which isO(N`212), vanishes forN → ∞, equation (5)
acquires the Liouville form, the solution of which describes the deterministic flow

d

dt
Ωt =

〈∑
i

wi(σ)[Ω(Fiσ) − Ω(σ)]

〉
Ωt ,t

. (6)

Although exact forN → ∞ (provided the diffusion term indeed vanishes), the set (6) need
not be closed, due to the appearance ofpt(σ) in the sub-shell average.

There are twonatural ways for the set (6) to close. First, by the argument of the
subshell average in (6) depending onσ only throughΩ(σ) (now pt(σ) will simply drop
out), and second by the microscopic dynamics (2) allowing for equipartitioning solutions
(wherept(σ) depends onσ only throughΩ(σ)). In both cases one obtains the correct
equations forΩt upon simply eliminatingpt(σ) from (6).

2.2. Closed flow equation for an order parameter function

Generalizing [1] to the present case, we now make the following assumptions:
(i) The observablesΩ(σ) are self-averaging with respect to the microscopic realization

of the disorder{zij }, at any time.
(ii) In evaluating the sub-shell averages we assume equipartitioning of probability within

the Ω-subshell of the ensemble.
As a resultpt(σ) drops out, and the macroscopic equations (6) are replaced by closed

ones, from which the unpleasant fraction is removed as in [1] using the replica identity∑
σ 8(σ)W(σ)∑

σ W(σ)
= lim

n→0

∑
σ1

· · ·
∑
σn

8(σ1)

n∏
α=1

W(σα). (7)
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We now obtain:
d

dt
Ωt =

〈∑
σ δ[Ω − Ω(σ)]

∑
i wi(σ)[Ω(Fiσ) − Ω(σ)]∑

σ δ[Ω − Ω(σ)]

〉
{zij }

= lim
n→0

∑
σ1

· · ·
∑
σn

〈∑
i

wi(σ)[Ω(Fiσ
1) − Ω(σ1)]

n∏
α=1

δ[Ω − Ω(σα)]

〉
{zij }

. (8)

Our second assumption (equipartitioning) is the dangerous one; its impact on the accuracy
of the theory depends critically on the choice made for the observablesΩ(σ). If, however,
the observablesΩ(σ) indeed obey closed self-averaging dynamic equations, our closure
procedure will be exact (see our reasoning above). Requiring the theory to be exact in two
solvable limits (equilibrium andJ → 0, respectively) imposes constraints on the allowed
choices forΩ(σ). Since in equilibrium we have equipartitioning of probability in the energy-
subshells (with the Hamiltonian (4)), and since forJ → 0 one obtains closed dynamic
equations for the magnetization, our two requirements implyΩ(σ) = (m(σ), H(σ), . . .)

(modulo equivalent combinations). For theSK model the energy per spin can be written as

H(σ)/N = − 1
2J0m

2(σ) − θm(σ) − J r(σ) + 1
2J0/N (9)

with

m(σ) = 1

N

∑
i

σi r(σ) = 1

N
√

N

∑
i<j

σizij σj (10)

so the choice made in [1] leads to the simplest two-parameter theory that meets our
requirements of exactness in the two solvable limits. Improving upon [1] implies including
microscopic information beyond(m, r), i.e. adding observables to the setΩ(σ) =
(m(σ), r(σ)). Addition of any finite number of observables, although technically simple,
is not expected to give more than just minor corrections. In contrast we choose for the set
of observablesΩ(σ) the (infinite dimensional) joint spin-field distribution:

D(ς, h; σ) = 1

N

∑
i

δς,σi
δ[h − hi(σ)] (11)

with the local fields (3). Our motivation for this choice is the following
(i) The previous two dynamic parametersm(σ) and r(σ) can be written as integrals

over D(ς, h; σ), so the advanced theory automatically inherits the exactness in the two
solvable limitst → ∞ andJ → 0.

(ii) The order parameter functionD(ς, h) specifies the underlying statesσ to a much
higher degree than(m, r); i.e. microscopic memory is taken into account.

(iii) The microscopic equation (2) itself is formulated in terms of spins and fields.
(iv) The choice (11) allows for immediate generalization to models without detailed

balance and to soft-spin models.
To avoid all kinds of technical difficulties we assume that the distribution (11) is

sufficiently well behaved; we assume that we can evaluateDt(ς, h) in a number` of
field argumentshµ and take the limit̀ → ∞ after the limit N → ∞. We then have 2̀
observables�ςµ(σ) = D(ς, hµ; σ), with µ = 1, . . . , ` andς = ±1. In order to work out
equation (8) we calculate the discrete derivatives1

ςµ

i (σ) = D(ς, hµ; Fiσ) − D(ς, hµ; σ):

1
ςµ

i (σ) = 2σi

N
√

N

∑
j 6=i

δς,σj
δ′[hµ − hj (σ)]

[
J0√
N

+ Jzij

]

+2J 2

N2

∑
j 6=i

δς,σj
δ′′[hµ − hj (σ)]z2

ij − 1

N
ςσiδ[hµ − hi(σ)] + O(N− 3

2 ) (12)
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where primes indicate derivatives (in a distributional sense). Since1
ςµ

i (σ) = O(N− 1
2 ), the

diffusion term in (5) could beO(1). Explicit calculation, however, will show that it vanishes
asN− 1

2 ; at this stage we anticipate that calculation and assume deterministic evolution. To
suppress notation we write∑

σ

∫
dH f (σ, H)D(σ, H) = 〈f (σ, H)〉D.

In order to see clearly for which terms our two closure assumptions will actually be
operational, we first work out the exact equation (6). We insert (12) into (6) and retain
only the leadingO(1) terms:

∂

∂t
Dt(ς, h) = 1

2[1 + ς tanh(βh)]Dt(−ς, h) − 1
2[1 − ς tanh(βh)]Dt(ς, h)

+ ∂

∂h

{
Dt(ς, h)[h − θ − J0〈tanh(βH)〉Dt

]

− J

N
√

N

∑
i 6=j

zij 〈tanh(βhi(σ))δς,σj
δ[h − hj (σ)]〉Dt ;t

}

+J 2 ∂2

∂h2

{
1

N2

∑
i 6=j

z2
ij 〈[1 − σi tanh(βhi(σ))]δς,σj

δ[h − hj (σ)]〉Dt ;t

}
+O(N− 1

2 ) (13)

with the sub-shell average

〈f (σ)〉D;t =
∑

σ pt(σ)f (σ)
∏

ςµ δ[D(ς, hµ) − 1
N

∑
j δς,σj

δ[hµ − hj (σ)]]∑
σ pt(σ)

∏
ςµ δ[D(ς, hµ) − 1

N

∑
j δς,σj

δ[hµ − hj (σ)]]
. (14)

Thecloseddynamic equation (8) is subsequently obtained from (13) by elimination ofpt(σ)

and averaging over the disorder (using identity (7)):

∂

∂t
Dt(ς, h) = 1

2[1 + ς tanh(βh)]Dt(−ς, h) − 1
2[1 − ς tanh(βh)]Dt(ς, h)

+ ∂

∂h

{
Dt(ς, h)[h − θ − J0〈tanh(βH)〉Dt

]

− J

N
√

N

∑
i 6=j

〈〈zij tanh(βhi(σ))δς,σj
δ[h − hj (σ)]〉〉Dt

}

+J 2 ∂2

∂h2

{
1

N2

∑
i 6=j

〈〈z2
ij [1 − σi tanh(βhi(σ))]δς,σj

δ[h − hj (σ)]〉〉Dt

}
+O(N− 1

2 ) (15)

with

〈〈f [σ; {zkl}]〉〉D = lim
n→0

∑
σ1

· · ·

· · ·
∑
σn

〈
f [σ1; {zkl}]

n∏
α=1

∏
ςµ

δ

[
D(ς, hµ) − 1

N

∑
j

δς,σα
j
δ[hµ − hj (σ

α)]

]〉
{zkl}

.

(16)
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Finally, it will become clear shortly that the diffusion term in (15) is relatively simple,
essentially obtained by replacingz2

ij → 1. As a result all complications are concentrated in
a single termA, and we find forN → ∞ the relatively simple final expression

∂

∂t
Dt(ς, h) = 1

2
[1 + ς tanh(βh)]Dt(−ς, h) − 1

2
[1 − ς tanh(βh)]Dt(ς, h)

+ ∂

∂h

{
Dt(ς, h)[h − θ − J0〈tanh(βH)〉Dt

+ A[ς, h; Dt ]

+J 2[1 − 〈σ tanh(βH)〉Dt
]

∂

∂h
Dt(ς, h)

}
(17)

with

A[ς, h; Dt ] = − lim
N→∞

J

N
√

N

∑
i 6=j

〈〈zij tanh(βhi(σ))δς,σj
δ[h − hj (σ)]〉〉Dt

. (18)

3. Replica calculation of the flow

We now turn to the evaluation of〈〈f [σ; {zkl ]〉〉D.

3.1. Disorder and spin averages

In the familiar fashion for replica calculations we carry out the disorder averages before the
spin averages. We remove the disorder dependence through the local fields from within the
constraining delta functions, by inserting

1 =
∏
α

∏
k

∫
dHα

k δ[Hα
k − hk(σ

α)] =
∏
α

∏
k

∫
dĥα

k dHα
k

2π
exp[iĥα

k (Hα
k − hk(σ

α))]

so that we can write (16) as

〈〈f [σ; {zkl}]〉〉D = lim
n→0

∫
[dH1 dĥ1] · · · [dHn dĥn]

×
∑
σ1

· · ·
∑
σn

exp

[
i
∑

i

∑
α

ĥα
i [Hα

i − θ ] − iJ0

N

∑
i 6=j

∑
α

ĥα
i σ α

j

]
×
∏
ςµα

δ

[
D(ς, hµ) − 1

N

∑
j

δς,σα
j
δ[hµ − Hα

j ]

]
×
〈
f [σ1; {zkl}] exp

[
− iJ√

N

∑
i 6=j

zij

∑
α

ĥα
i σ α

j

]〉
{zkl}

. (19)

After symmetrization due tozij = zji and after using permutation symmetry with respect to
site labels, we find that the disorder averages in (15) involve the following two integrals,
encountered in the flow term (18), and in the diffusion term, respectively:∫ ∏

i<j

Dzij exp

[
− iJ√

N
zij

∑
α

(ĥα
i σ α

j + ĥα
j σ α

i )

]{√
Nz12

z2
12

}

=
{−iJ

∑
α[ĥα

2σα
1 + ĥα

1σα
2 ]

1

}∏
i<j

exp

[
− J 2

2N

[∑
α

(ĥα
i σ α

j + ĥα
j σ α

i )

]2]
(20)

with the Gaussian measureDz = (2π)−1/2e−z2/2, and where we only retained the leading
O(1) contributions. Applying (19) to the trivial functionf [σ; {zkl}] = 1 gives a



Order-parameter flow in theSK spin-glass: II 769

normalization relation, which we can use to avoid having to perform the remaining integrals.
As a result we immediately find the diffusion term in (15) to be simply

J 2 ∂2

∂h2
{Dt(ς, h)[1 − 〈σ tanh(βH)〉Dt

]} (21)

which proves (17), whereas the remaining disorder-induced flow term (18) remains non-
trivial. A similar calculation shows, upon substitution of (12) into (5), that the second term
in the macroscopic stochastic equation (5) is of order`2N−1. Given our assumption that
the limit ` → ∞ can be taken after the limitN → ∞, this proves that the evolution of the
distributionDt(ς, h) is indeed deterministic on finite time-scales.

We now introduce the following set of order parameters (with their conjugates) in order
to a achieve a factorization over sites of (18), by inserting appropriate integral representations
of unity (from which all factors 2π will vanish in the limit n → 0):

mα({σ}) = 1

N

∑
i

σ α
i Wαβ({ĥ, σ}) = 1

N

∑
i

ĥα
i ĥ

β

i σ α
i σ

β

i

qαβ({σ}) = 1

N

∑
i

σ α
i σ

β

i Rαβ({ĥ, σ}) = 1

N

∑
i

ĥα
i σ

β

i Qαβ({ĥ}) = 1

N

∑
i

ĥα
i ĥ

β

i .

The δ-distribution involvingDt(ς, h) is also written in integral form. Combination of the
trio (18), (19), (20) then leads to a fully site-factorized expression:

A[ς, h; D] = iJ 2 lim
N→∞

lim
n→0

∫
dm dm̂ dq dq̂ dQ dQ̂ dR dR̂ dW dŴ dD̂

× exp

[
J 2
∑
αβ

Wαβ − N

2
J 2
∑
αβ

[Qαβqαβ + RαβRβα]

]
× exp

{
iN
∑

α

[∑
ς ′µ

D(ς ′, hµ)D̂α(ς ′, hµ) + mαm̂α

]
+iN

∑
αβ

[qαβq̂αβ + QαβQ̂αβ + RαβR̂αβ + WαβŴαβ ]

}
×
∫

[dH1 dĥ1] · · · [dHn dĥn]

×
∑
σ1

· · ·
∑
σn

tanh(βH 1
1 )δ[h − H 1

2 ]δς,σ 1
2

∑
α

[ĥα
2σα

1 + ĥα
1σα

2 ]

× exp

{
− i

∑
i

∑
αβ

[q̂αβσ α
i σ

β

i + Q̂αβĥα
i ĥ

β

i + R̂αβĥα
i σ

β

i + Ŵαβĥα
i ĥ

β

i σ α
i σ

β

i ]

}
× exp

{
− i

∑
i

∑
α

[∑
µ

D̂α(σ α
i , hµ)δ[hµ − Hα

i ] + m̂ασ α
i

−ĥα
i

[
Hα

i − θ − J0mα + J0

N
σα

i

]]}
= iJ 2 lim

N→∞
lim
n→0

∫
dm dm̂ dq dq̂ dQ dQ̂ dR dR̂ dW dŴ dD̂ eN9+O(1)

×
∑

α

{〈tanh(βH1)σα〉M〈δ[h − H1]δς,σ1ĥα〉M

+〈tanh(βH1)ĥα〉M〈δ[h − H1]δς,σ1σα〉M} (22)



770 S N Laughton et al

with

9 = i
∑
ασµ

D(σ, hµ)D̂α(σ, hµ) + i
∑

α

mαm̂α

+i
∑
αβ

[qαβq̂αβ + QαβQ̂αβ + RαβR̂αβ + WαβŴαβ ]

−1

2
J 2
∑
αβ

[Qαβqαβ + RαβRβα] + log
∫

dH dĥ〈M[H, ĥ, σ]〉σ

(in which 〈f (σ)〉σ = 2−n
∑

σ1
· · ·∑σn

f (σ)) and with the effective single-site measureM

(all vectors now carry replica-indices only):

〈f [H, ĥ, σ]〉M =
∫

dH dĥ
∑

σ M[H, ĥ, σ]f [H, ĥ, σ]∫
dH dĥ

∑
σ M[H, ĥ, σ]

(23)

M[H, ĥ, σ] = exp

{
− im̂ · σ − iσ · q̂σ − iĥ · Q̂ĥ − iĥ · R̂σ − i

∑
αβ

Ŵαβĥαĥβσασβ

−
∑
αµ

D̂α(σα, hµ)δ[hµ − Hα] + i
∑

α

ĥα[Hα − θ − J0mα]

}
.

By changing the order of the limitsN → ∞ and n → 0, the remaining integral can be
evaluated by steepest descent. It is dominated by the extremum of9 which forn > 1 defines
a global maximum (theO(1) term in the exponent in (22) will drop out due to normalization,
as can be checked explicitly by using the above calculation to rewrite〈〈1〉〉D).

3.2. Simplification of the saddle-point problem

We can make several immediate simplifications. First, variation of9 with respect toWαβ ,
Qαβ , qαβ and Rαβ gives saddle-point equations with which to remove all conjugate order
parameter matrices from our problem:

Ŵ = 0 iQ̂ = 1
2J 2q iq̂ = 1

2J 2Q iR̂ = J 2R†.

Second, the scaling freedom in the definition of the conjugate parametersD̂(ς ′, hµ) can be
used to take the limit̀ → ∞:∑

µ

D̂α(σ, hµ)f (hµ) →
∑

µ

1h · D̂α(σ, hµ)f (hµ) →
∫

dH D̂α(σ, H)f (H)

(` → ∞).

The result of these simplications and of taking theN → ∞ limit is the following:

A[ς, h; D] = iJ 2 lim
n→0

∑
α

{〈tanh(βH1)σα〉M〈δ[h − H1]δς,σ1ĥα〉M

+〈tanh(βH1)ĥα〉M〈δ[h − H1]δς,σ1σα〉M}
with the effective measure (23), in whichM and the exponent9 to be extremized are now
given by

M[H, ĥ, σ] = exp{−im̂ · σ − 1
2J 2σ · Qσ − 1

2J 2ĥ · qĥ

−i
∑

α

D̂α(σα, Hα) + iĥ · [H − θ − J0m + iJ 2R†σ]}

9 = i
∑
ασ

∫
dH D(σ, H)D̂α(σ, H) + i

∑
α

mαm̂α
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+1

2
J 2
∑
αβ

[qαβQαβ + RαβRβα] + log
∫

dH dĥ〈M[H, ĥ, σ]〉σ

with the notationθ = (θ, . . . , θ). Next we perform the integrations over the conjugate
fields ĥ, which leads to an effective measureM involving spins and fields only:

〈f [H, σ]〉M =
∫

dH
∑

σ M[H, σ]f [H, σ]∫
dH

∑
σ M[H, σ]

(24)

M[H, σ] = exp

{
− im̂ · σ − 1

2
J 2σ · Qσ − i

∑
α

D̂α(σα, Hα)

− 1

2J 2
[H − θ − J0m + iJ 2R†σ] · q−1[H − θ − J0m + iJ 2R†σ]

}
(25)

9 = i
∑
ασ

∫
dHD(σ, H)D̂α(σ, H) + i

∑
α

mαm̂α + 1

2
J 2
∑
αβ

[qαβQαβ + RαβRβα]

−1

2
log detq + log

∫
dH 〈M[H, σ]〉σ. (26)

In 9 (26) we have neglected irrelevant constants. At this stage it will be convenient to
calculate the remaining saddle-point equations, by variation of (26). The first of these
equations, obtained by variation with respect toD̂(σ, H), enables us to write all averages
with a single replica-index, involving fields and spins, self-consistently in terms of the
original distributionD(σ, H):

D(σ, H) = 〈δσ,σα
δ[H − Hα]〉M (27)

mα = m = 〈σ 〉D (28)

qαβ = 〈σασβ〉M (29)

m̂α = i
J0

J 2

∑
β

(q−1)αβ

{
〈H 〉D − θ − J0m + iJ 2m

∑
γ

Rγβ

}
(30)

Rαβ = i

J 2

∑
γ

(q−1)αγ 〈[Hγ − θ − J0m + iJ 2(R†σ)γ ]σβ〉M (31)

J 2Qαβ = ∂

∂qαβ

log detq − 2

(
∂ logM[H, σ]

∂qαβ

)
M

. (32)

We can now write the flow termA (18) of our diffusion equation as

A[ς, h; D] = − lim
n→0

∑
αβ

(q−1)αβ

×{〈tanh(βH1)σα〉M〈δ[h − H1]δς,σ1[Hβ − θ − J0m + iJ 2(R†σ)β ]〉M
+〈δ[h − H1]δς,σ1σα〉M〈tanh(βH1)[Hβ − θ − J0m + iJ 2(R†σ)β ]〉M}. (33)

3.3. Equilibrium

In equilibrium, we know that the microscopic probability distribution is of the Boltzmann
form, p∞(σ) ∼ e−βH(σ). Therefore, the present constraint restricting micro-states under
consideration to those with the same joint spin-field distribution, must in equilibrium reduce
to a constraint selecting states with the same energy. We will now make the ansatz

D̂α(σ, H) = 1
2iβσ [H + θ ] (34)
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and show that it indeed corresponds to a stationary state for our diffusion equation (17), in
which one recovers the familiar equations from equilibrium statistical mechanics; i.e. the
full (RSB) order parameter equations [2, 3] as well as the equilibrium local field distribution
[8].

We first turn to the saddle-point equations. Given the simple expression (34) we can
perform the field integrations, with the result

9 = −1

2
βn
∑

σ

∫
dHD(σ, H)σ [H + θ ] + i

∑
α

mαm̂α + 1

2
J 2
∑
αβ

[qαβQαβ + RαβRβα]

+ log〈exp{[βθ + 1
2βJ0m − im̂] · σ + 1

2J 2σ · [ 1
4β2q − Q − iβR†]σ}〉σ

(35)

(again we forget about irrelevant constants). The remaining saddle-point equations become

m̂α = 1
2iβJ0mα Qαβ = − 1

4β2qαβ Rαβ = 1
2iβqβα (36)

mα = 〈σα exp[β[J0m + θ] · σ + 1
2(βJ )2σ · qσ]〉σ

〈exp[β[J0m + θ] · σ + 1
2(βJ )2σ · qσ]〉σ

qαβ = 〈σασβ exp[β[J0m + θ] · σ + 1
2(βJ )2σ · qσ]〉σ

〈exp[β[J0m + θ] · σ + 1
2(βJ )2σ · qσ]〉σ

(37)

which are the familiar equations [3] as obtained by an equilibrium (thermodynamic) analysis.
With the relations (34), (36) we can simplify the effective measureM considerably:

〈f [H, σ]〉M =
∫

dz exp(− 1
2z · q−1z)〈f [J0m + θ + Jz, σ] exp(βσ · [J0m + θ + Jz])〉σ∫

dz exp(− 1
2z · q−1z)〈exp(βσ · [J0m + θ + Jz])〉σ

(38)

(with m = (m, . . . , m)) This simplified measure obeys useful relations like

〈σαf [H; {σγ 6=α}]〉M = 〈tanh(βHα)f [H; {σγ 6=α}]〉M (39)

〈(Hα − J0m − θ)f [{Hγ 6=α}; σ]〉M = βJ 2
∑

β

qαβ〈σβf [{Hγ 6=α}; σ]〉M. (40)

In particular we now findm = 〈tanh(βH)〉D. If we combine the expression (38) with (27),
sum over the remaining spin variableσ and perform the integration overz, we are led
directly to the equilibrium expression for the local field distribution as obtained in [8]:

D(h) = lim
n→0

∫
dk

2π
exp{− 1

2J 2k2 − ik(h − J0m − θ)}

×〈exp{β[J0m + θ] · σ + 1
2(βJ )2σ · qσ + ikβJ 2∑

α q1ασα}〉σ
〈exp{β[J0m + θ] · σ + 1

2(βJ )2σ · qσ}〉σ
.

Next we show that the choice (34) corresponds to a fixed point of the diffusion
equation (17), i.e. thatddt

Dt (ς, h) = 0 for all (ς, h). In the right-hand side of (17)
the first two terms trivially cancel, which follows from applying to (27) the identities
δς,σ = 1

2[1 + ςσ ] and (39):

[1 + ς tanh(βh)]D(−ς, h) − [1 − ς tanh(βh)]D(ς, h)

= ς〈δ[h − Hα][tanh(βh) − σα]〉M = 0.

Equivalently:

D(ς, h) = 1
2[1 + ς tanh(βh)]D(h)
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We use (36) and (39), (40) to rewrite (33). In doing so we will also use equilibrium relations
like

βJ 2
∑

α

q2
1α = 〈tanh(βH)(H − J0m − θ)〉D

which can be derived directly from the equilibrium saddle-point equations (see e.g. [1]).
The result is:

A[ς, h; D] = −(h − θ − J0m)D(ς, h) − βJ 2[1 − 〈tanh2(βH)〉D]ςD(ς.h)

+[1 − 〈tanh2(βH)〉D] lim
n→0

∑
γ

(q−1)1γ 〈δ[h − H1]δς,σ1[Hγ − J0m − θ ]〉M.

(41)

In order to combine the flow termA in (17) with the diffusion term, we apply (38) to
equation (27) and calculate the field derivative:

J 2 ∂

∂h
D(ς, h) = J lim

n→0

[ ∫
dz δ[h − J0m − θ − Jzα]

∂

∂zα

×{exp{− 1
2z · q−1z}〈δς,σα

exp{βσ[J0m + θ + Jz]}〉σ}
]

×
[ ∫

dz exp{− 1
2z · q−1z}〈exp{βσ[J0m + θ + Jz]}〉σ

]−1

= βJ 2ςD(ς, h) − lim
n→0

∑
γ

(q−1)1γ 〈δ[h − H1]δς,σ1[Hγ − J0m − θ ]〉M. (42)

Insertion of (41) and (42) into the right-hand side of (17) leads to the desired result: it
exactly vanishes. This completes the proof that the standard thermodynamic equilibrium
state, as calculated within equilibrium statistical mechanics, defines a fixed-point of our
diffusion equation (17). Note, however, that this leaves open the possibility of existence
for stationary states other than the thermodynamic one.

4. Replica symmetric flow

4.1. Derivation of theRS equations

In order to proceed further in evaluating explicitly the saddle points we now make, as a
first step, the ergodicity or replica-symmetry ansatz (RS). All order parameters with a single
replica index are assumed not to depend on this index; all order parameter matrices are
assumed to have entries which depend only on whether or not they are on the diagonal.
With a modest amount of foresight we put

mα = m qαβ = (1 − q)δαβ + q

m̂α = iµ Rαβ = i(1 − q)[R0δαβ + R] (43)

D̂α(σ, H) = i log χ(σ, H) Qαβ = Q0δαβ + qR2
0 − 2(1 − q)RR0 − Q2

which implies(q−1)αβ = (1− q)−1[δαβ − q(1− q)−1] + O(n). Working out theRS version
of the extensive exponent9 (26) gives

lim
n→0

9RS

n
= −mµ − 1

2
log(1 − q) − q

2(1 − q)
− 1

2
J 2(1 − q)Q2 − J 2(1 − q)2[R2

0 + 2R0R]

−
∑

σ

∫
dH D(σ, H) logχ(σ, H) + lim

n→0

1

n
log

∫
dH 〈MRS[H, σ]〉σ (44)
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with

MRS[H, σ] =
∏
α

{
χ(σα, Hα)

× exp

[
µσα − 1

2J 2(1 − q)
(Hα − θ − J0m)2 + R0(Hα − θ − J0m)σα

]}
× exp

{
q

2J 2(1 − q)2

[∑
α

(Hα − θ − J0m)

]2

+ 1

2
J 2Q2

[∑
α

σα

]2

+(R − qR0

1 − q
)

[∑
α

(Hα − θ − J0m)

][∑
β

σβ

]}
. (45)

We can obtain a factorization ofMRS[H, σ] with respect to the replica labels by introducing
appropriate Gaussian integrations:

exp

{
A

[∑
α

Fα

]2

+ B

[∑
α

σα

]2

+ C

[∑
α

Fα

][∑
β

σβ

]}
=
∫

Dx Dy
∏
α

exp{Fα

√
2A(x cosφ + y sinφ) + σα

√
2B(x cosφ − y sinφ)}

with cos(2φ) = C/2
√

AB andDx = (2π)−1/2 e−x2/2 dx. Application of the above identity
to (45) leads to an expression for (44) in which we can take the remaining limitn → 0.
We use the definition of the angleφ to eliminate the order parameterR from our problem
and write the averages over the two Gaussian variablesx andy as〈〈. . .〉〉xy . The final result
involves an effective measureMRS[H, σ ] without replica indices:

lim
n→0

9RS

n
= −mµ − 1

2
log(1 − q) − q

2(1 − q)

−J 2(1 − q)

[
1

2
Q2 + (1 + q)R2

0 + 2R0Q
√

q cos(2φ)

]
−
∑

σ

∫
dH D(σ, H) logχ(σ, H) +

〈〈
log

∫
dH 〈MRS[H, σ ]〉σ

〉〉
xy

(46)

with

MRS[H, σ ] = χ(σ, H) exp

{
µσ − (H − θ − J0m)2

2J 2(1 − q)
+ R0(H − θ − J0m)σ

+
√

q

J (1 − q)
(H − θ − J0m)(x cosφ + y sinφ) + JQσ(x cosφ − y sinφ)

}
.

(47)

We write averages with respect to this final measureMRS[H, σ ], which are parametrized
by the Gaussian variablesx andy, as

〈f [H, σ ]〉? =
∫

dH
∑

σ MRS[H, σ ]f [H, σ ]∫
dH

∑
σ MRS[H, σ ]

.

To further reduce our future bookkeeping we derive two useful relations by partial integration
over the Gaussian variables:

〈〈x〈f [H, σ ]〉?〉〉xy = cosφ
√

q

J (1 − q)
〈〈〈f [H, σ ]H 〉? − 〈f [H, σ ]〉?〈H 〉?〉〉xy

+JQ cosφ〈〈〈f [H, σ ]σ 〉? − 〈f [H, σ ]〉?〈σ 〉?〉〉xy
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〈〈y〈f [H, σ ]〉?〉〉xy = sinφ
√

q

J (1 − q)
〈〈〈f [H, σ ]H 〉? − 〈f [H, σ ]〉?〈H 〉?〉〉xy

−JQ sinφ〈〈〈f [H, σ ]σ 〉? − 〈f [H, σ ]〉?〈σ 〉?〉〉xy.

Functional differentiation of (46) with respect to the functionχ gives theRS saddle-point
equation

D(ς, h) = 〈〈〈δ[h − H ]δς,σ 〉?〉〉xy (48)

which implies, as expected, the general relation

〈〈〈f [H, σ ]〉?〉〉xy = 〈f [H, σ ]〉D.

Differentiation of (46) with respect to the parameters{q, m, µ, R0, Q, φ} and repeated usage
of the above bookkeeping identities gives the remainingRS saddle-point equations:

m = 〈σ 〉D (49)

q = 〈〈〈σ 〉2
?〉〉xy (50)

2J 2R0(1 − q)2 = 〈σ(H − J0m − θ)〉D − 〈〈〈σ 〉?〈H − J0m − θ〉?〉〉xy (51)

2J 2(1 − q)[R0(1 + q) + Q
√

q cos(2φ)] = 〈σ(H − J0m − θ)〉D (52)

µ + J0R0m = J0

J 2(1 − q)
〈H − J0m − θ〉D (53)

J 2q − J 4(1 − q)2[Q2 + 4qR2
0 + 8QR0

√
q cos(2φ)] + 〈(H − J0m − θ)2〉D

= 1 + q

1 − q
〈〈〈(H − J0m − θ)2〉? − 〈H − J0m − θ〉2

?〉〉xy. (54)

We now use theRS ansatz to perform then → 0 limit in the flow termA (33) of our
diffusion equation (17). Note that, due ton → 0, we may deal with averages over the
original measureM which involve two replica indices (such as those encountered in (33)
in the following way:

〈f [Hα, σα]g[Hβ, σβ ]〉M → δαβ〈f [H, σ ]g[H, σ ]〉D + (1 − δαβ)〈〈〈f [H, σ ]〉?〈g[H, σ ]〉?〉〉xy.

With this identity we can work out (33). We use the short-handQ
√

q cos(2φ) = (1−q)R1,
and find after some bookkeeping and some re-arranging of terms:

(1 − q)2ARS[ς, h; D] = (2q − 1)D(ς, h)

×[(h − J0m − θ)〈tanh(βH)σ 〉D + ς〈tanh(βH)(H − J0m − θ)〉D]

−qD(ς, h)[(h − J0m − θ)〈〈〈tanh(βH)〉?〈σ 〉?〉〉xy

+ς〈〈〈tanh(βH)〉?〈H − J0m − θ〉?〉〉xy ]

+2ςJ 2(1 − q)2D(ς, h)

×[(R1 + R0)〈tanh(βH)σ 〉D − R1〈〈〈tanh(βH)〉?〈σ 〉?〉〉xy ]

+〈〈〈δ[h − H ]δς,σ 〉?〈H − J0m − θ〉?〉〉xy

×[〈〈〈tanh(βH)〉?〈σ 〉?〉〉xy − q〈tanh(βH)σ 〉D]

+〈〈〈δ[h − H ]δς,σ 〉?〈σ 〉?〉〉xy

×[〈〈〈tanh(βH)〉?〈H − J0m − θ〉?〉〉xy − q〈tanh(βH)(H − J0m − θ)〉D]

+2J 2(1 − q)2〈〈〈δ[h − H ]δς,σ 〉?〈σ 〉?〉〉xy

×[(R1 − R0)〈〈〈tanh(βH)〉?〈σ 〉?〉〉xy − R1〈tanh(βH)σ 〉D]. (55)

In the RS approximation the evolution of the joint spin-field distribution is described by
equation (17), in which the disorder-induced termA is given by (55). Evaluation ofA, in
turn, requires solving the set of saddle-point equations (48)–(54), at each instance of time.
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4.2. TheAT instability

The de Almeida–Thouless (AT) instability [9] marks the instability of theRS solution of
the saddle-point equations to the so-called replicon mode. This leads to a second-order
transition away from theRS state to states with broken replica symmetry (RSB). Unlike the
standard equilibrium calculations, we here have to worry about replicon fluctuations with
respect to three replica matrices:

qαβ → qRS
αβ + δqαβ δqαα = 0

∑
α

δqαβ =
∑

β

δqαβ = 0

Qαβ → QRS
αβ + δQαβ δQαα = 0

∑
α

δQαβ =
∑

β

δQαβ = 0 (56)

Rαβ → RRS
αβ + iδRαβ δRαα = 0

∑
α

δRαβ =
∑

β

δRαβ = 0

with δqαβ = δqβα, δQαβ = δQβα and δRαβ = δRβα. As usual the replicon
fluctuations satisfy convenient matrix commutation relations, like [qRS, δq] = [QRS, δQ] =
[RRS, δR] = 0. TheAT instability corresponds to a zero eigenvalue in the spectrum of the
Hessian (i.e. the matrix of second derivatives) of9 at theRS saddle-point. However, since
the Rαβ are conjugate order parameters, acquiring an imaginary value, the naive picture of
this zero eigenvalue signalling the bifurcation of a local maximum, need not be true. We can
avoid all such subtleties by following the alternative procedure: to considerRSB fluctuations
only after elimination of the conjugate order parametersRαβ with equation (31). This is
equivalent to first working out the variation in9 (26) for the case where all fluctuations
(56) are independent, followed by a projection onto the subspace defined by (31).

Expansion of (26) around theRS saddle point, the first non-trivial order of which must
by definition be quadratic in the replicon fluctuations, gives

9 − 9RS = 1

2
〈G2〉M + 1

2
J 2
∑
αβ

δqαβδQαβ − J 2
∑
αβ

δR2
αβ − J 2R0

∑
αβ

δRαβδqαβ

+1

2

∑
αβ

δq2
αβ

[
1

2(1 − q)2
+ 3J 2R2

0 − 1

J 2(1 − q)3
〈〈〈H 2〉? − 〈H 〉2

?〉〉xy

]
+O(δ3) (57)

with

G = −1

2
J 2σ · [δQ + 2R0δR − R2

0δq]σ + (H − J0m − θ) · δq(H − J0m − θ)

2J 2(1 − q)2

+σ · [δR − R0δq](H − J0m − θ)

1 − q
.

In order to evaluate the term in (57) that involvesG, we note that inRS saddle-points and
for indicesα 6= β andγ 6= λ:

〈fαgβhγ kλ〉M = δαγ δβλ〈〈〈f h〉?〈gk〉? + 〈f 〉?〈g〉?〈h〉?〈k〉?
−〈f h〉?〈g〉?〈k〉? − 〈gk〉?〈f 〉?〈h〉?〉〉xy

+δαλδβγ 〈〈〈f k〉?〈gh〉? + 〈f 〉?〈g〉?〈h〉?〈k〉?
−〈f k〉?〈g〉?〈h〉? − 〈gh〉?〈f 〉?〈k〉?〉〉xy

+ terms with less than twoδ’s.
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Only the terms with two Kroneckerδ’s can contribute to〈G2〉M , due to the specific properties
of the replicon fluctuations. We now obtain

1

2
〈G2〉M = 1

4
J 4〈〈[1 − 〈σ 〉2

?]2〉〉xy

∑
αβ

[δQαβ + 2R0δRαβ − R2
0δqαβ ]2

+ 1

4J 4(1 − q)4
〈〈[〈H 2〉? − 〈H 〉2

?]2〉〉xy

×
∑
αβ

δq2
αβ

+ 1

2(1 − q)2
〈〈[1 − 〈σ 〉2

?][ 〈H 2〉? − 〈H 〉2
?]

+[〈σH 〉? − 〈σ 〉?〈H 〉?]2〉〉xy

×
∑
αβ

[δRαβ − R0δqαβ ]2

− 1

2(1 − q)2
〈〈[〈σH 〉? − 〈σ 〉?〈H 〉?〉]2〉〉xy

×
∑
αβ

δqαβ [δQαβ + 2R0δRαβ − R2
0δqαβ ]

− J 2

1 − q
〈〈[1 − 〈σ 〉2

?][ 〈σH 〉? − 〈σ 〉?〈H 〉?]〉〉xy

×
∑
αβ

[δRαβ − R0δqαβ ][δQαβ + 2R0δRαβ − R2
0δqαβ ]

+ 1

J 2(1 − q)3
〈〈[〈σH 〉? − 〈σ 〉?〈H 〉?][ 〈H 2〉? − 〈H 〉2

?]〉〉xy

×
∑
αβ

δqαβ [δRαβ − R0δqαβ ].

The various combinations of matrix fluctuations can be somewhat disentangled by
introducing the transformation

δQ = −R2
0δq − 2

R0

J
δr + 2

J 2
δk δR = R0δq + 1

J
δr.

In addition this renders all fluctuations dimensionless. Expression (57) now acquires the
form

9 − 9RS =
∑
αβ

(
δkαβ

δqαβ

δrαβ

)
M

(
δkαβ

δqαβ

δrαβ

)
+ O(δ3) (58)

in which the entries of the symmetric 3× 3 matrix M are

M11 = 〈〈[1 − 〈σ 〉2
?]2〉〉xy

M12 = M21 = 1

2
− 1

2J 2(1 − q)2
〈〈[〈σH 〉? − 〈σ 〉?〈H 〉?]2〉〉xy

M13 = M31 = − 1

J (1 − q)
〈〈[1 − 〈σ 〉2

?][ 〈σH 〉? − 〈σ 〉?〈H 〉?]〉〉xy

M22 = 1

4(1 − q)2
〈〈[1 − 〈H 2〉? − 〈H 〉2

?

J 2(1 − q)
]2〉〉xy − J 2R2

0
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M23 = M32 = 1

2J 3(1 − q)3
〈〈[〈σH 〉? − 〈σ 〉?〈H 〉?][ 〈H 2〉? − 〈H 〉2

?]〉〉xy − 2JR0

M33 = 1

2J 2(1 − q)2
〈〈[1 − 〈σ 〉2

?][ 〈H 2〉? − 〈H 〉2
?] + [〈σH 〉? − 〈σ 〉?〈H 〉?]2〉〉xy − 1. (59)

We now use (31) to eliminate the conjugate order parametersRαβ from our equations. In the
space ofRS saddle-points and replicon fluctuations we satisfy [R, q] = 0, so equation (31)
simplifies to

(qR)αβ = i

2J 2
〈(Hα − J0m − θ)σβ〉M

which after some algebra translates into the following constraint on the replicon fluctuations

M31δk + M32δq + M33δr = 0.

The stability of theRS saddle-point against replicon fluctuations is now controlled by a
symmetric 2× 2 matrix M :

9 − 9RS =
∑
αβ

(
δkαβ

δqαβ

)
M

(
δkαβ

δqαβ

)
+ O(δ3)

M =
(

1 0 −M31/M33

0 1 −M32/M33

)
M

( 1 0
0 1

−M31/M33 −M32/M33

)

=
(

M11 − M2
13/M33 M12 − M13M32/M33

M12 − M13M32/M33 M22 − M2
23/M33

)
. (60)

Due to the curvature sign change of the second derivative of9, the analytic continuation
to n → 0 of the saddle-point that maximizes9 for n > 1, will minimize 9 for n < 1.
This is emphasized explicitly by the summation overn(n − 1) non-trivial terms (all index
combinations withα 6= β) in (58). We can conclude that theAT instability occurs when the
largest eigenvalue of the matrixM is zero.

4.3. Equilibrium

From our previous result, the confirmation that the general (RSB) thermodynamic equilibrium
state is a stationary state of our flow equation (17), it follows that the same must hold within
the RS ansatz. We will now show this explicitly, as a non-trivial consistency test (rather
than a new result). The previous ansatz (34) translates into

χ(σ, H) = exp[1
2βσ(H + θ)]. (61)

Due to (61) the measureMRS in (46) becomes a Gaussian function of the fields, which
enables us to perform the field integrals and work out theRS saddle-point equations (49)–
(54). The result is:

µ = 1
2βJ0m Q = 0 R0 = 1

2β (62)

m =
∫

Dz tanhβ(J0m + θ + Jz
√

q) (63)

q =
∫

Dz tanh2 β(J0m + θ + Jz
√

q) (64)

which are the familiarRS equilibrium saddle-point equations, as first obtained in [2].
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We now turn to the right-hand side of equation (17). SinceQ = 0 the original two
Gaussian variables(x, y) in (46) are replaced by a single one,z. With (61) and (36) we
can simplify the effective measureMRS (47), as in the fullRSB case, leading to

〈〈〈f [σ, H ]〉?〈g[σ, H ]〉?〉〉xy →
∫

Dz 〈f [σ, H ]〉?〈g[σ, H ]〉?

〈f [σ, H ]〉? =
[∑

σ

exp{βσ [J0m + θ + Jz
√

q]}

×
∫

Dw f [σ, J0m + θ + Jw
√

1 − q + Jz
√

q + βJ 2σ(1 − q)]

]
×[2 coshβ[J0m + θ + Jz

√
q]]−1.

In particular:

〈δ[h − H ]δς,σ 〉? =
exp{βςh − 1

2β2J 2(1 − q) − 1
2J 2(1−q)

[h − J0m − θ − Jz
√

q]2}
2J

√
2π(1 − q) coshβ[J0m + θ + Jz

√
q]

. (65)

The dependence of (65) onς only through a factor eβςh immediately ensures that the first
two terms in the diffusion equation (17) cancel. Since this happens even before we carry
out the Gaussian average, we may write

〈δ[h − H ]δς,σ 〉? = 1
2[1 + ς tanh(βh)]D(h; z)

implying relations like

〈σf (H)〉? = 〈tanh(βH)f (H)〉?.
The building blocks of (55) thereby become

〈σ 〉? = tanhβ[J0m + θ + Jz
√

q]

〈H − J0m − θ〉? = βJ 2(1 − q)〈σ 〉? + Jz
√

q∫
Dz 〈tanh(βH)〉?〈σ 〉? = q∫
Dz 〈tanh(βH)〉?〈H − J0m − θ〉? = 2βJ 2q(1 − q)∫
Dz 〈tanh(βH)(H − J0m − θ)〉? = βJ 2(1 − q2).

We will also need the following identity, obtained by partial integration overz:∫
Dz z〈δ[h − H ]δς,σ 〉? =

√
q

J
D(ς, h)(h − J0m − θ)

−βJ
√

q(1 − q)

∫
Dz 〈δ[h − H ]δς,σ 〉?〈σ 〉?. (66)

We now have the necessary tools to analyse with minimum effort the complicated terms
in our diffusion equation, given the ansatz (61). The combined flow terms in (17) can be
simplified to

D(ς, h)(h − J0m − θ)D(ς, h) + ARS[ς, h; D] = [1 − 〈tanh2(βH)〉D][
1 − 2q

(1 − q)2
D(ς, h)(h − J0m − θ) − βJ 2ςD(ς, h) + qβJ 2

1 − q

×
∫

Dz 〈δ[h − H ]δς,σ 〉?〈σ 〉? + Jq
√

q

(1 − q)2

∫
Dz z〈δ[h − H ]δς,σ 〉?

]
.
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In order to evaluate the diffusion term in (17) we calculate the field derivative ofD(ς, h),
using (65):

J 2 ∂

∂h
D(ς, h) = βJ 2ςD(ς, h) − h − J0m − θ

1 − q
D(ς, h) + J

√
q

1 − q

∫
Dz z〈δ[h − H ]δς,σ 〉?.

The full right-hand side of (17) can now be written as

[1 − 〈tanh2(βH)〉D]

[
qβJ 2

1 − q

∫
Dz 〈δ[h − H ]δς,σ 〉?〈σ 〉? − q

(1 − q)2
D(ς, h)(h − J0m − θ)

+ J
√

q

(1 − q)2

∫
Dz z〈δ[h − H ]δς,σ 〉?

]
= 0

(by virtue of the identity (66)). TheRS equilibrium state obtained in [2] therefore defines a
stationary state of ourRS diffusion equation (17), (55).

Finally we turn to theAT instability, which we found to occur when the largest eigenvalue
of the matrixM (60) is zero. We can use the various identities, derived for the thermal
equilibrium state, to simplify the matrix elements ofM considerably:

Meq = −1

2(βJ )23 − 1

(
3 1

2[1 − (βJ )23]
1
2[1 − (βJ )23] 1

4(βJ )2[1 − (βJ )23]

)
with

3 =
∫

Dz cosh−4 β[J0m + θ + Jz
√

q].

The AT instability, as calculated within equilibrium statistical mechanics [9], occurs at
(βJ )23 = 1. Substitution of this condition into our expression forMeq immediately leads
to the desired result: the two eigenvalues ofMeq are {−3, 0}, so the two conditions for
the AT instability coincide.

5. Comparison with simulations

In order to verify the predictions of our theory we here compare the results of solving
numerically the (macroscopic) diffusion equation (17), in which the disorder-generated
term A is calculated within theRS ansatz (55), with the results of performing numerical
simulations of the discretized version of the underlying microscopic stochastic dynamics
(2), (3). Solving the diffusion equation (17), requires making a discretization not only of
time, but also of the joint spin-field distribution, i.e. replace the two continuous functions
Dt(±1, h) by two histograms. Furthermore, at each time-step we have to solve theRS

saddle-point equations (48)–(54), which involve nested Gaussian integrations. It will be
clear that the solution of equation (17) requires a significant computational effort, even
within the RS ansatz, which is reflected in the scope of the experiments described in this
paper. We restrict ourselves to describing the evolution of the system in zero external field
(θ = 0), following initial states with individual spin states chosen independently at random,
given a required initial magnetization. Following the various experimental protocols that
show spin-glass ageing phenomena, such as relaxation following cooling in a small field, and
relaxation with intermittent temperature increases or decreases, we consider to be beyond
the scope of this paper.
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5.1. Transients

First we study the relaxation of the system on short time-scales. We measure as a function of
time the magnetizationm, the energy per spinE, and the two distributionsDt(±1, h). Note
that the full local field distributionDt(h) is just the sumDt(1, h)+Dt(−1, h). The numerical
simulations were carried out with systems ofN = 8000 spins, following randomly drawn
initial states. The results of confronting our theory with typical simulation experiments, for
relaxations atT = 0, are shown in figures 1 and 2, forJ0 = 0 (left pictures) andJ0 = 1
(right pictures). In figure 1 the top graphs represent the magnetizationm and the bottom
graphs represent the energy per spinE; for the two initial conditionsm0 = 0 andm0 = 0.3.
Figure 2 shows the corresponding distributionsD(σ, h) for one particular choice of initial
state (Dt(1, h): upper graph int = 0 window, right graph int > 0 windows;Dt(−1, h):
lower graph int = 0 window, left graph int > 0 windows). ForJ0 = 1 we were unable
to calculate the solution of equation (17) up tot = 6, due to the critical behaviour of the
saddle-point equations (48)–(54). In figures 3 and 4 we show similar relaxation results
for T = 1. As expected, at higher temperatures the two distributionsDt(±1, h) acquire a
shape which becomes more like a Gaussian one, whereas in the low-temperature regime the
deviations from a Gaussian shape become important.

Figure 1. Evolution atT = 0 of the magnetizationm and the energy per spinE, for J0 = 0
(left) andJ0 = 1 (right): full curves, numerical simulations withN = 8000; dotted curves, result
of solving theRS diffusion equation.

To emphasize the increase in accurateness obtained by the present advanced version of
our theory, as opposed to the simple two-parameter theory of [1], we show in figure 5 the
simulation data and the predictions of the two versions of our theory (simple as opposed
to advanced) corresponding to a relaxation from a random initial state (withm0 = 0), for
T = J0 = 0. The failure of the two-parameter theory to account for the typical slowing
down of the dynamics appears to have been amended convincingly by choosing as the
dynamic object the full distributionDt(σ, h), rather than just the magnetization and the
energy per spin. Since the solution of our diffusion equation (17), as depicted in figure 5, is
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Figure 2. Evolution at T = 0 of the two field distribitionsDt(σ, h), for J0 = 0 (left) and
J0 = 1 (right): histograms, numerical simulations withN = 8000; full curves, result of solving
the RS diffusion equation.

obtained within theRS ansatz, this slowing down of the dynamics is not caused by replica
symmetry breaking.

5.2. Relaxation near the spin-glass transition

One way in which we can complement the short-time results presented so far, whilst avoiding
having to solve the saddle-point problem (48)–(54) for large times, is to consider the
dynamics in theq = 0 (paramagnetic) region. This allows us to investigate the relaxation
near J0 = 0, T = 1 (the critical point which marks theP → SG transition). In the
paramagnetic region theRS saddle-point problem can be solved,

q = m = R1 = 0 J 2R0 = 〈σH 〉D J 4Q2 = 〈〈〈H 〉2
?〉〉xy

and the diffusion equation can be expressed entirely in terms of (averages over) the
distribution Dt(ς, h) itself. Upon also making use of the invariance of the problem with
respect to an overall spin sign change, we can writeDt(ς, h) in terms of a single function,
the symmetric part of which is proportional to the local field distribution:

Dt(ς, h) = 1
2Ft(ςh) 〈f (σH)〉D =

∫
dyF(y)f (y) = 〈f (y)〉F .

In terms ofFt the diffusion equation (17) becomes

∂

∂t
Ft (x) = 1

2[1 + tanh(βx)]Ft(−x) − 1
2[1 − tanh(βx)]Ft(x)

+J 2[1 − 〈tanh(βy)〉Ft
]

∂2

∂x2
Ft(x) + ∂

∂x
{Ft(x)[x[1 − 〈tanh(βy)〉Ft

]
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Figure 3. Evolution atT = 1 of the magnetizationm and the energy per spinE, for J0 = 0
(left) and J0 = 1 (right): full curves, numerical simulations withN = 8000; dotted curves,
result of solving theRS diffusion equation.

+〈y〉Ft
〈tanh(βy)〉Ft

− 〈y tanh(βy)〉Ft
]}. (67)

A randomly drawn initial state corresponds to

F0(x) = 1

J
√

2π
e− 1

2 x2/J 2
.

Since (67) is relatively easy to iterate numerically, we can now compare the theoretical
predictions with the numerical data over much larger time-scales. In figure 6 we compare
the result of solving (67) with numerical simulations, fort ∈ [0, 500], in terms of the
energy per spinE = − 1

2〈y〉Ft
. We observe again a satisfactory agreement between theory

and experiment.

6. Discussion

The present paper is the second in a series of papers in which we systematically develop
a dynamical replica theory to describe the evolution of macroscopic observables in the
Sherrington–Kirkpatrick [2] spin-glass. Our procedure for obtaining closed macroscopic
flow equations is based on two assumptions: (i) the flow equations are self-averaging with
respect to the realization of the disorder, at any time; and (ii) we may assume equipartitioning
of probability in the macroscopic sub-shells of the ensemble. The procedure can be shown
to beexact, if the set of macroscopic observables to which it is applied indeed obeys closed
dynamic equations. The resulting closed flow equations involve a saddle-point problem, to
be solved at each instance of time, formulated in the replica language.

In our previous paper [1] the closure procedure was applied to the observablesm and
E (the magnetization and the energy per spin), resulting in a two-parameter dynamical
theory. Here we have shown how the same procedure can be succesfully applied to the
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Figure 4. Evolution at T = 1 of the two field distribitionsDt(σ, h), for J0 = 0 (left) and
J0 = 1 (right): histograms, numerical simulations withN = 8000; full curves, result of solving
the RS diffusion equation.

Figure 5. Comparison of simulations (N = 8000, full curve), the simple two-parameter theory
(RS stable, dotted curve,RS unstable, broken curve) and the advanced theory (full curve), for
T = J0 = 0. Note that the two full curves are almost on top of each other at the scale shown.

joint spin-field distributionD(ς, h), resulting in a dynamical theory describing an infinite
number of macroscopic order parameters. The present, advanced, version of our theory
is again by construction exact for short times, in equilibrium, and in the limit where the
disorder is removed. Furthermore, since the joint spin-field field distribution specifies the
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Figure 6. Relaxation of the energy per spinE for J0 = θ = 0 andT ∈ {1.0, 1.1, 1.2}: dots,
numerical simulations withN = 3200; curves, results of solving theRS diffusion equation.

underlying microscopic states in much more detail than would be the case by specifying
only the energy and the magnetization (i.e. more microscopic memory effects are being
taken into acount), the equipartitioning assumption has become much weaker. We have
restricted our analysis of the saddle-point equations by making the replica-symmetric (RS)
ansatz. On the time-scales considered in our simulation experiments, the agreement between
advancedRS theory and experiment is quite satisfactory. For example, the slowing down
missed by the two-parameter theory is now well accounted for, and the theory describes
correctly the relaxation near the spin-glass transition. At this stage we need more efficient
numerical procedures in order to extend the time-scales for which we can solve explicitly the
analytical macrodynamic equations (17) ff. This would enable us to compare, for instance,
with data such as the ones in [10], to investigate the possible existence of stationary states
other than the one corresponding to thermal equilibrium, and to see whether the theory
can describe the typical ageing phenomena observed in numerical simulations of similar
mean-field spin-glass models [11].

A next stage of our programme will be to investigate for the Sherrington–Kirkpatrick
spin-glass the effects of replica symmetry breaking on the dynamic equations [6]. Although
technically non-trivial, it is a straightforward generalization of the formalism developed so
far.

Finally, a relevant question which we have not yet been able to answer is whether our
diffusion equation (17), (33) is exact (for infinitely large systems and on finite time-scales).
There are several approaches to this problem, each of which we plan to investigate in the
near future. The first approach is to apply our formalism to those disordered spin systems
for which the dynamics has been solved by other means, like the non-symmetricSK model
(in which each of the bonds is drawn independently and asymmetrically at random [12, 13];
preliminary results of this study can be found in [14]), a toy model used in analysing the
shortcomings of the previous two-parameter approach [15], or the spherical spin-glass [16].
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By definition, however, such exercises would not yet prove exactness in the case of theSK

spin-glass. The second approach would be to try to derive a diffusion equation for the joint
spin-field distribution, starting from the equations for correlation and response functions,
as obtained from the path-integral formalism [5]. The latter approach involves (rather
complicated) closed equations for two functionsC(t, t ′) andR(t, t ′), with two real-valued
arguments each (two times). The present formalism also involves two functionsDt(1, h)

andDt(−1, h), with two real-valued arguments each (one time and one field). It is therefore
quite imaginable that both formalisms constitute exact discriptions of the dynamics of the
SK model.
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