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OX1 3NP, UK
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Abstract. We develop further a recent dynamical replica theory to describe the dynamics of the
Sherrington—Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order
parameters. We show how microscopic memory effects can be included in the formalism through
the introduction of a dynamic order parameter function: the joint spin-field distribution. The
resulting formalism describes very accurately the relaxation phenomena observed in nhumerical
simulations, including the typical overall slowing down of the flow that was missed by the
previous simple two-parameter theory. The advanced dynamical replica theory is either exact
or a very good approximation.

1. Introduction

In a previous paper [1] we introduced a theory to describe the Glauber dynamics of the
Sherrington—Kirkpatrick gK) [2] spin-glass model in terms of deterministic flow equations
for two macroscopic state variables: the magnetizatioand the spin-glass contribution

to the energy (for a more general discussion ofgskenodel and of the relevant literature on

its dynamics we refer to [1]). The theory is based on the removal of microscopic memory
effects: the only ‘knowledge’ the system is assumed to have of its past is the value of
the macroscopic staten, r). In fact any acceptable macroscopic dynamical theory for the
sk model must contain as dynamical variables, either explicitly or implicitly, at least the
magnetizationn (which is the relevant observable for many typical spin-glass remanence
phenomena) and the total energy of the system (in order for the theory to reproduce the
correct equilibrium equations). Since for tis& model the energy per spin is a simple
function of the macroscopic state vectet, r), the theory of [1] can be seen as the simplest
two-parameter dynamical theory for ts& model that has the properties of being exact for
short times (upon choosing appropriate initial conditions) and in equilibrium.

At a technical level, the resulting formalism is a dynamical replica theory, which at
fixed-points of the macroscopic flow reduces to the standard equilibrium replica theory,
including replica symmetry breakingr¢p) a la Parisi [3] if it occurs. This is in contrast
to an alternative formalism based on path-integral methods (see e.g. [4, 5]), where it is not
yet known how to recover the standard equilibrium resultg$s situations. In fact, the
potential of the present theory to provide the link between equilibrium replica theory and
the description in terms of correlation and response functions (once the hitherto neglected
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microscopic memory effects have been incorporated), we regard as one of its most interesting
features.

In [1] the actual macroscopic flow equations were determined explicitly only within the
replica-symmetrygs) ansatz. Th&sversion of the theory was quite successful at predicting
the flow trajectories in thém, r) plane, but also exhibited clear deviations in terms of the
long-term temporal dependence of the macroscopic state variatdeslr. These are partly
due to the elimination from the dynamical equations of microscopic memory effects, and
partly an artefact of th&s ansatz. The latter cause for deviations can be dealt with by
allowing for a breaking of replica symmetry, following Pariskss scheme [3]; although
technically non-trivial, this can be seen as a straightforward generalization of the theory
(dynamicalrRsB within the present formalism will be the subject of a subsequent paper
[6]). Here, however, we concentrate on the more subtle question of how to incorporate
more complete microscopic memory effects, i.e. on how to generalize the ideas in [1] to a
situation where a macroscopic state specifies the details of the underlying microscopic states
to a much higher degree. We will show that, by considering as the appropriate macroscopic
dynamical observable the joint spin-field distribution, one can indeed follow the steps in [1]
and arrive at a dynamic replica theory which not only inherits by construction the exactness
of the previous (simple) two-parameter theory in the temporal limits 0 andr — oo, but
also describes the simulation experiments accurately, as far as our (limited) data allow us to
conclude. The philosophy of our approach resembles the one proposed by Horner [7], who
also derived a closed diffusion equation for the evolution of the joint spin-field distribution.
However, at the technical level of the closure procedure there are important differences.
The present theory is not only exact for short times (as is [7]), but also in equilibrium, in
the sense that thielll RSB equations are recovered. More importantly, it is constructed in
such a way that it will produce exact dynamic equations if the joint spin-field distribution
indeed turns out to constitute a closed level of description.

This paper is organized as follows. First we generalize the theory of [1] to the case of
an arbitrary set of macroscopic observables, and derive constraints on the allowed choices
for such a set, by requiring exactness in specific limits. We then derive a diffusion equation
for the joint spin-field distribution, which generates a dynamical replica theory. For further
explicit analysis, the relevant equations are simplified by makingrthansatz, and their
predictions are compared to the results of numerical simulations. We close the paper with
a discussion of our results and their implications.

2. Dynamics and replicas

2.1. Definitions and macroscopic laws

The sk spin-glass model [2] consists &¥ Ising spinso; € {—1, 1} with infinite-range
exchange interactiong;:

J, ! Jo+ ! J (i <) (1)

ij = SJoT —(—=JZjj 1<

J N \/N J J

where the quantities;;, which represent quenched disorder, are drawn independently at
random from a Gaussian distribution with zero mean and unit variance and then frozen
during the spin dynamics. The evolution in time of the microscopic probability distribution

p: (o) is taken to be of the Glauber form described by the master equation

d N
g 7@ = ;[p,(mek(Fka) — pi(@)wi(0)] )
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in which F is a spin-flip operatoF, ® (o) = ®(01,..., —0%,...,oy) and the transition
rateswy (o) and the local alignment fields; (o) are
wi(o) = 3[1 — ox tanh[Bhy ()] hi(o) =Y Jijo; +6 A3)
J#

where g8 is the inverse temperature. This leads asymptotically to the required standard
Boltzmann equilibrium distributionp,, (o) ~ exp[-B8H (o)], with the conventional
Hamiltonian

H(O‘):—ZO’iJijUj—QZO’i. (4)

i<j i
We now turn to the evolution in time of any given set &©macroscopic observables

Qo) = (Q(o),...,Q2(0)), described by the macroscopic probability distribution
P = Y, pi(0)8[Q — Q(o)]. We insert the master equation (2), and expand the
result in powers of the ‘discrete derivatives! (o) = Q,(F;o) — ©,(o), which gives

d 9 "
4P == 250, {7%(9)< Z w; (o) A! (U)>m}

4

1 92 L v

} +O(NEA  (5)
nv=1

where we introduced the sub-shell, or conditional, average
_ 2y P1(0)3[Q2 — Q(0)] f (o)
(fo))a:= S (@[ — Q)]

If the second (diffusion) term, which i©(N¢2A?), vanishes forN — oo, equation (5)
acquires the Liouville form, the solution of which describes the deterministic flow

%o, - <Z i (@) [QUF o) — n<a>]>9 . ®)

151

Although exact forN — oo (provided the diffusion term indeed vanishes), the set (6) need
not be closed, due to the appearancedbr) in the sub-shell average.

There are twonatural ways for the set (6) to close. First, by the argument of the
subshell average in (6) depending enonly through€2 (o) (now p, (o) will simply drop
out), and second by the microscopic dynamics (2) allowing for equipartitioning solutions
(where p, (o) depends oro only through€2(o)). In both cases one obtains the correct
equations foif2; upon simply eliminatingp, (o) from (6).

2.2. Closed flow equation for an order parameter function

Generalizing [1] to the present case, we now make the following assumptions:

(i) The observable$)(o) are self-averaging with respect to the microscopic realization
of the disorder{z;;}, at any time.

(i) In evaluating the sub-shell averages we assume equipartitioning of probability within
the Q-subshell of the ensemble.

As a resultp, (o) drops out, and the macroscopic equations (6) are replaced by closed
ones, from which the unpleasant fraction is removed as in [1] using the replica identity

Za- cI)(‘J')VV(O') T 1 n .,
Y W) _l@o;“';Wa )L[lww ). @)
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We now obtain:
d Q- <Za 5[ — Q)] ) wi(o)[QUF;o) — ﬂ(a)]>
Za- 6[9 - Q(U)] {zij}

de

=lim> - Z<Z wi(@)[QFo") — Qo] [ ] 8l - ﬂ(a“>]> - ®
=l o i a=1 {zij}

Our second assumption (equipartitioning) is the dangerous one; its impact on the accuracy
of the theory depends critically on the choice made for the observélies. If, however,
the observable$2(o) indeed obey closed self-averaging dynamic equations, our closure
procedure will be exact (see our reasoning above). Requiring the theory to be exact in two
solvable limits (equilibrium and/ — 0, respectively) imposes constraints on the allowed
choices foi2(o). Since in equilibrium we have equipartitioning of probability in the energy-
subshells (with the Hamiltonian (4)), and since fbr— 0 one obtains closed dynamic
equations for the magnetization, our two requirements infply) = (m(o), H(o),...)
(modulo equivalent combinations). For teg model the energy per spin can be written as

H(o)/N = —1Jgm?(o) — 0m(o) — Jr(o) + 3Jo/N 9)
with
m(o) = 1 > o r(o) = . > oizijo; (10)
N : i N\/N iLijYj

i<j
so the choice made in [1] leads to the simplest two-parameter theory that meets our
requirements of exactness in the two solvable limits. Improving upon [1] implies including
microscopic information beyondm,r), i.e. adding observables to the s&(o) =
(m(o), r(o)). Addition of any finite number of observables, although technically simple,
is not expected to give more than just minor corrections. In contrast we choose for the set
of observable£2 (o) the (infinite dimensional) joint spin-field distribution:

1
D(s, o) = Zam,-a[h — hi(0)] (11)

with the local fields (3). Our motivation for this choice is the following

(i) The previous two dynamic parametergo) andr(o) can be written as integrals
over D(c, h; o), so the advanced theory automatically inherits the exactness in the two
solvable limitst — oo andJ — 0.

(ii) The order parameter functiob (s, h) specifies the underlying statesto a much
higher degree thatm, r); i.e. microscopic memory is taken into account.

(iii) The microscopic equation (2) itself is formulated in terms of spins and fields.

(iv) The choice (11) allows for immediate generalization to models without detailed
balance and to soft-spin models.

To avoid all kinds of technical difficulties we assume that the distribution (11) is
sufficiently well behaved; we assume that we can evaluatg, #) in a numbere of
field arguments:, and take the limi¥ — oo after the limit N — oo. We then have 2
observable2., (o) = D(g, h,; o), with w =1,..., ¢ and¢ = £1. In order to work out
equation (8) we calculate the discrete derivative$ (o) = D(s, h,; Fio) — D(s, h,; o):

20; Jo
A (o) = ! 8c6.8[h, —h;(o |:+JZ,'C|
(o) Nﬁ;;,/[M 1@ | o+ T3
2‘12 ” 2 1 -3
+z 28508 Ty — hj(@)]zf = coidlhy — hi@)] + ON™2)  (12)
J#L
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where primes indicate derivatives (in a distributional sense). Skj¢go) = O(N*%), the
diffusion term in (5) could b&(1). Explicit calculation, however, will show that it vanishes

asN~z; at this stage we anticipate that calculation and assume deterministic evolution. To
suppress notation we write

> [ dtt s mD@. H) = (o ).

In order to see clearly for which terms our two closure assumptions will actually be
operational, we first work out the exact equation (6). We insert (12) into (6) and retain
only the leadingD(1) terms:

d
o Dils, ) = $[1 4 ¢ tanh(Bm)]D,(—¢, h) — 3[1 — ¢ tanh(BW)] D, (s, )

0
+8h{Dr(§, mW)[h — 6 — Jo(tanh(BH)) p,]

J
——"— > z;{tanh(Bhi(6))d¢ 0, 8[h — h<<a>1>u,;t}
N\/N; J S J
3% (1
+I% { N2 2 21 = on tanhBhi ()18, 80h — (a)])a;f}
i#]

TO(N™?) (13)

with the sub-shell average

t 8[D(c, h,) — E o.0[h, — h;
(f@))py = 2o Pi(@ (@)1, 8ID (s ) B N 2 8c.0,0u J(U)]]' 14
Za’ pi (o) ng 5[D(§, hlL) - N Zj 8;,0/5[1’1# _ h](O')]]

Thecloseddynamic equation (8) is subsequently obtained from (13) by eliminatign(ef)
and averaging over the disorder (using identity (7)):

0
—Dy(s,h) = 3[1+ s tanh(Bh)1Di(—g, h) — 3[1 — ¢ tanhBM)] D, (s, h)

ot
0
+% {Dt(g, h)[h — 6 — Jo(tanh(BH))p,]
J
NIV ;«Zij tanh(Bh;(0))d¢.0,8[h — hj(d)]»o,}
2 (1
+J2W { N2 ;((zlzl[l — o; tanh(Bh;(0))]8¢.5,8[h — h; (C")]»D,}
i
+O(N™2) (15)
with

(flo; {zutNp = ’lliLTIOZ: .

" 1
" <f[g-1; e ]‘[6[1)(;, h) = 3 SeopSlh =y (,,a)]]>
o a=1 cu j {zu}

(16)
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Finally, it will become clear shortly that the diffusion term in (15) is relatively simple,
essentially obtained by replacilzg. — 1. As a result all complications are concentrated in
a single termA, and we find forN — oo the relatively simple final expression

d 1 1
—-Di(g, h) = 5[1 + g tanh(Bh)] D (=g, h) — 5[1 — s tanh(Bh)] D, (s, h)

ot
0
+8h{ (5. [h =6 — Jo{tanhBH)) p, + Als. h: D]
L= (o AN H 3 D a7)
with
. J
Als. i D] = = lim_—=r ;«zi, tanh(Bh; (0))8¢.0,60h — h;(@)])p,. (18)

3. Replica calculation of the flow
We now turn to the evaluation dff[o; {zx])p.

3.1. Disorder and spin averages

In the familiar fashion for replica calculations we carry out the disorder averages before the
spin averages. We remove the disorder dependence through the local fields from within the
constraining delta functions, by inserting

dh® dH? -
1= HU/O‘H? S[HY — hi(o™)] = HU[ kZTL' k. explih® (HY — hi(6®))]

so that we can write (16) as

(flo: (zul)p = lim / [dH'dAY] - [dH" dh"]

X3 Lol St~ o) Y S|

it
1
< [T8| Dis. ) = bl - 1]
S Jj
iJ N
x( flohs fzu)] exp[— — ) zj hf‘an . (19)
< ! W ; ' Xa: ! {2z}

After symmetrization due te;; = z;; and after using permutation symmetry with respect to
site labels, we find that the disorder averages in (15) involve the following two integrals,
encountered in the flow term (18), and in the diffusion term, respectively:

iJ N ra o N
/l_[Dz,-j exp[— ﬁzij Z(hi o +hjo; )] { sz}

i<j <12
—iJ };ao_a_‘_};a > ‘12 ra o ra _a 2
= { 2.l PR 1"2]}Hexp[—m[2(k,~aj + hfo; )] (20)
i<j o

with the Gaussian measu®; = (27)~Y2e~**/2, and where we only retained the leading
O(1) contributions. Applying (19) to the trivial functionf[o; {zy}] = 1 gives a
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normalization relation, which we can use to avoid having to perform the remaining integrals.
As a result we immediately find the diffusion term in (15) to be simply

8hz{a(g, W[L ~ (o tanhBH))p,]} (21)

which proves (17), whereas the remaining disorder-induced flow term (18) remains non-
trivial. A similar calculation shows, upon substitution of (12) into (5), that the second term
in the macroscopic stochastic equation (5) is of oréfey —X. Given our assumption that
the limit £ — oo can be taken after the limiV — oo, this proves that the evolution of the
distribution D; (¢, h) is indeed deterministic on finite time-scales.

We now introduce the following set of order parameters (with their conjugates) in order
to a achieve a factorization over sites of (18), by inserting appropriate integral representations
of unity (from which all factors 2 will vanish in the limitn — 0):

1 A 1 AA
malo) = 1Y of Woplth,oh) = o 3 hthfofof

1 A 1 N
qusol) = 1 D ofol  Ryplth.oh) =3 hial  Qup(ih)) Zh“hﬁ

The §-distribution involving D, (¢, h) is also written in integral form. Combination of the
trio (18), (19), (20) then leads to a fully site-factorized expression:

Alc,h; D] =iJ? I|m I|m/dmdmdqdqudeRdeWdeD

N—oo l‘l—)

X exp[J2 Z Wep — EJ2 Z[Qaﬂqaﬁ + RaﬂRﬂa]}
af af

« exp{iN )3 [ZD(g’, B Da(c' ) +mm}
o '

"HN Z[Qaﬁéaﬁ + Qaﬁ szﬂ + Raﬁ Iéaﬂ + Waﬁ Waﬂ]}
af

x / [dH'dRY]-- - [dH" dh"]

XZ Ztank(ﬂHll)a[h H318, 3 Z[hzal + hod]

X exp{ —i Z Z[%/ﬂ o + Qaﬁh"‘h + Raﬁflf‘oiﬂ + Waﬁflf‘ﬁf}q‘)‘o’-ﬁ]}

L

x exp{ —iy > [Z Dy(08, h)8h, — HY] + g0}
i o I

. Jo
—h*| H* — 0 — Jomg + —0°
e =0 —som+ 3t

=iJ? lim_lim / dm drin dg dg dQ dQ dR AR dW dW dD e¥¥+o®

N—oon—0

x Y ((tanh(B Hy)ow) y (8[h — HalS oiha)

+{tanh(BHy)hg) m(8[h — Hil8¢.0,04) ) (22)
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with
W =i D(0.hy)Du(0.hy) +1Y  maiia

ao i 4

+| Z[qclﬂéolﬂ + Q(xﬂ Qaﬁ + Raﬁjéaﬂ + Waﬁ Waﬁ]
ap

1 N A
377 S\ @upds + Ry + 08 [ AH hMIH, B 1)
of

(in which (f(0))e =27"3_, --->_, f(0)) and with the effective single-site measuve
(all vectors now carry replica-indices only):

_ JdHdRY, M[H h, o] f[H, h, o]
B [dH dhY", M[H, h, o]

(f[H.h, ol)u (23)

M[H, ﬂ,a] =exp{ —irh-a—io‘-t}a—iﬁ-@fz—ifz-Rd—iZWaﬂfzaﬁﬂ%aﬁ
B

= Do (00r hy)Slhy — Hal +1Y_ ho[Hy — 6 — Joma]}.
op o

By changing the order of the limit — oo andn — 0, the remaining integral can be
evaluated by steepest descent. Itis dominated by the extremumwbich forn > 1 defines

a global maximum (th€(1) term in the exponent in (22) will drop out due to normalization,
as can be checked explicitly by using the above calculation to reytite).

3.2. Simplification of the saddle-point problem

We can make several immediate simplifications. First, variatiod afith respect toW,g,
Qup: qap and Ryg gives saddle-point equations with which to remove all conjugate order
parameter matrices from our problem:

W=0 Q=13 ig=1/°Q iR=JR".
Second, the scaling freedom in the definition of the conjugate paranfe(gfsh“) can be
used to take the limif — oo:

> " Du(0. hy) f(hy) = Y Ah - Da(o, hy) f(hy) — /dH Dy(o, H) f(H)
125 "

(£ — 00).
The result of these simplications and of taking fkie— oo limit is the following:
Alg. h: D) =172 lim > “({tanh(p Hy)ou) w (51h — HilS.oiha)u

+{tanh(BH hq) m (8[h — Hild 0,00) m)

with the effective measure (23), in whicld and the exponen¥ to be extremized are now
given by

M[H, h, o] = exp{—ith - o — %Jzo' - Qo — %Jzﬁ - qh
—iY " Do(04. Hy) +ibh - [H — 0 — Jom +iJ°Rio])

U= iZ/dH D(o, H)D, (o, H)—}—iZmarha
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1 R .
+é.]2 Z[C]aﬁ Qup + RopRpa] + Iog/ dH dh(M[H , h, o))s
of

with the notationd = (0, ...,0). Next we perform the integrations over the conjugate
fields h, which leads to an effective measuvg involving spins and fields only:

_ JdH} , M[H, o] f[H, o]

(f[H,ol)u = [AH'S". MIH, o] (24)

1 N
M[H, o] = exp{ —im-o— éJza'-QO'—i;Da(oa, H,)

1
2J2

. . , .1
=iy / dHD(0. H)Do(o. H) +1)  mariy + é12 > “[qup Qup + Rap Rpal
ao o af

[H—O—Jom+iJ2RTU]-ql[H—9—J0m+iJZRT0']} (25)

—%Iogdethrlog/dH (M[H, o))o. (26)

In & (26) we have neglected irrelevant constants. At this stage it will be convenient to
calculate the remaining saddle-point equations, by variation of (26). The first of these
equations, obtained by variation with respectii¢, H), enables us to write all averages
with a single replica-index, involving fields and spins, self-consistently in terms of the
original distributionD (o, H):

D(o, H) = (86,0,0[H — Ho]) M (27)
my =m={0)p (28)
Gop = (008} M (29)
J .
My = |T‘; ;w%ﬁ{mm —0—Jom +i%my Ryﬁ} (30)
¥
Rop = % Z(q_l)w([Hy — 60— Jom + iJZ(RTa')V]Uﬂ)M (31)
¥
7200 = " ,Ogdetq_2<f"c’m‘4m"’]) , (32)
85101;3 aqaﬂ M

We can now write the flow term (18) of our diffusion equation as

. I -1
A[g’hv D] - ’Illinog(q )aﬂ

x{(tanh(B H1)0w )y (8[h — H1l¢ o [Hg — 0 — Jom +1J*(R'o)g]) m
+(8[h — H1)8..0,00) m(tanh(BHY)[Hg — 6 — Jom +iJ*(Rie)gl)m).  (33)

3.3. Equilibrium

In equilibrium, we know that the microscopic probability distribution is of the Boltzmann
form, ps (o) ~ e PH@  Therefore, the present constraint restricting micro-states under
consideration to those with the same joint spin-field distribution, must in equilibrium reduce
to a constraint selecting states with the same energy. We will now make the ansatz

Dy(o, H) = }io[H + 6] (34)
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and show that it indeed corresponds to a stationary state for our diffusion equation (17), in
which one recovers the familiar equations from equilibrium statistical mechanics; i.e. the
full (RsB) order parameter equations [2, 3] as well as the equilibrium local field distribution
[8].

We first turn to the saddle-point equations. Given the simple expression (34) we can
perform the field integrations, with the result

1 . 1
U= —éﬂn 20: f dH D (o, H)o[H + 0] +1i Xa:mama + é12 azﬁ:[qaﬁ Qup + RopRpal

+log(exp[6 + LpJom —imh] - o + 1720 - [15%¢ — Q —iBRo}),

(35)
(again we forget about irrelevant constants). The remaining saddle-point equations become
M = 3iBJomg Qop = —2B%up Ros = 2iBqsa (36)
_ (owexplBlJom + 6] - o + 3(B))°0 - qol)s
~ (explBlJom + 0] - o + 3(B))?0 - o)), -

(0,05 exp[B[Jom + 6] - o + 2(B)%0 - qo])s
(exp[[Jom + 6] - o + 3(BJ)20 - qol)sr

which are the familiar equations [3] as obtained by an equilibrium (thermodynamic) analysis.
With the relations (34), (36) we can simplify the effective measureonsiderably:

B fdz exp(—%z cq2)(flJom + 0 + Jz, olexp(Bo - [Jom + 0 + T z])),

qap =

H. ol = [dzexp(—32 - g 1z)(exp(Bo - [Jom + 0 + J 2]))o

(38)
(with m = (m, ..., m)) This simplified measure obeys useful relations like
(o fIH; {0y24}]) 1 = (tanNBH,) f[H; {024} m (39)
(Hy = Jom = 0) f[{Hyza}; lhm = BJ? ;qaﬁ<oﬁf[{ﬂy¢a}; ol (40)

In particular we now findn = (tanh(8H))p. If we combine the expression (38) with (27),
sum over the remaining spin variabte and perform the integration over, we are led
directly to the equilibrium expression for the local field distribution as obtained in [8]:

—im [ % exo— 1722 — ik — Jom —
D(h) = lim exp{—35J %k — ik(h — Jom — 0)}
n—0 2T

 (eXpBlIom + 6] - o + 5 (B))’0 - qo +KBI Y, quoel)
(explBlJom + 6] - o + 3(B))?0 - qo))s ‘

Next we show that the choice (34) corresponds to a fixed point of the diffusion
equation (17), i.e. thalc%D,(g, h) = 0 for all (¢, h). In the right-hand side of (17)
the first two terms trivially cancel, which follows from applying to (27) the identities
8co = 3[1+ ¢ol and (39):

[1+ s tanh(BW)]D (g, h) — [1 — s tani(Bh)] D (s, h)
= ¢(8[h — H,][tanh(Bh) — 0a])m = O.
Equivalently:

D(s, h) = 3[1 + s tanh(BM)] D (h)
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We use (36) and (39), (40) to rewrite (33). In doing so we will also use equilibrium relations
like

BI?Y " 4f, = (tanh(BH)(H — Jom — 0))p

which can be derived directly from the equilibrium saddle-point equations (see e.g. [1]).
The result is:

Als. h: D] = —(h = 6 — Jom) D(s. h) — BJ?[1 — (tanif (BH)) p] s D(s.h)
+[1 — (tantf(BH)) p] lim > (g™, (811 — Hilde.co [ Hy — Jom —60])r.
14

(41)
In order to combine the flow termd in (17) with the diffusion term, we apply (38) to
equation (27) and calculate the field derivative:
0

d
2 .
—D(c,h) = J Ilim S[h — —6 — .
J o (¢, h) Jnl 0|:/dz [ Jom — 6 Jza]aza

X{eXp{_:’zlz ° q_lz}wg,oa eXp{IBU[JOm + 0 + JZ]})U}]

-1
X |:/ dz exp{—%z -q 2z} expiBo[Jom + 0 + Jz]})a:|
= BI2cD(c. ) —lim > (g "My (8h — Hldc o [Hy — Jom — ). (42)
14

Insertion of (41) and (42) into the right-hand side of (17) leads to the desired result: it
exactly vanishes. This completes the proof that the standard thermodynamic equilibrium
state, as calculated within equilibrium statistical mechanics, defines a fixed-point of our
diffusion equation (17). Note, however, that this leaves open the possibility of existence
for stationary states other than the thermodynamic one.

4. Replica symmetric flow

4.1. Derivation of thers equations

In order to proceed further in evaluating explicitly the saddle points we now make, as a
first step, the ergodicity or replica-symmetry ans&3).(All order parameters with a single
replica index are assumed not to depend on this index; all order parameter matrices are
assumed to have entries which depend only on whether or not they are on the diagonal.
With a modest amount of foresight we put

mye =m Qaﬂ=(1—61)5a;3 +4q
nA’l(x =ip Raﬂ = |(1 - q)[RO(Sozﬁ + R] (43)
Dy(o, H) = ilog x (o, H) Qup = QoSus +qRE —2(1 — q)RRo — Q?

which implies(g Yes = (1 — ¢) 8sp — q(1 — g¢)~1] + O(n). Working out thers version
of the extensive exponent (26) gives

q
2(1-¢q)

-> / dH D(o, H)log x (o, H) + IimO%'Iog / dH (MrdH, o)) (44)

. 1
lim —Rsz—m,u—élog(l—q)—

- %J%l — ) 0% — J?(1 — ¢)’[R3 + 2RoR]
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with

MRS[H9 U] = 1_[ {X(Oav Hy)

o

x exp[/wa - (Hy — 6 — Jom)® + Ro(Hy — 6 — Jom)aa}}

272(1-q)

! 2
X exp{w(j_q—q)z[Z(Ha -0 — Jom)] + 2J2Q2|:Zaa:|

a

(R — ff"q)[gj(fla —6- Jom)][Zaﬁ“. (45)

B

We can obtain a factorization éfirs[ H, o] with respect to the replica labels by introducing
appropriate Gaussian integrations:

oS o[ o]+ e 5]

= f Dx Dy Hexp{Fa«/ﬂ(x COSp + y Sing) + oo v/2B(x COSp — y Sing)}

with cos2¢) = C/2v/AB and Dx = (2r)"Y2e*"/2dx. Application of the above identity
to (45) leads to an expression for (44) in which we can take the remainingdimit 0.
We use the definition of the angieto eliminate the order paramet&rfrom our problem
and write the averages over the two Gaussian variabksdy as (.. .))s,. The final result
involves an effective measurdrg[ H, o] without replica indices:

q
21-q)

1
-J2(1-¢q) [2 0%+ (1+q)RS +2R00/q cos(2¢)]

\ 1
lim —7° — —mu — > log(l—gq) —

— Z/dH D(o, H)log x (o, H) + << Iog/ dH (Mgrg[H, U])(,>> (46)
o xy
with
(H — 6 — Jom)?

Ro(H — 6 — J,
22(1— q) + Ro( om)o

MRS[Hv G] = X(O', H) eXp{MO' -

Vi

iAo

(H — 6 — Jom)(x cOS¢ + ysing) + J Qo (x cosgp — ysin¢>)}.

(47)
We write averages with respect to this final measMiigs[ H, o], which are parametrized
by the Gaussian variablasand y, as
[dH Y, Mrd[H, 0] f[H, o]
H,ol), = g
(f[H,0]) TAHS, Mrs[H, o]

To further reduce our future bookkeeping we derive two useful relations by partial integration
over the Gaussian variables:

(e (FIH, o1y = f,’f?_ */j) ((fH, 01H)s — (FIH. 010 (H) )y

+JQcosp((f[H,olo) — (f[H,0])u(0)xy
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(3 (TH oD = j"(qqs_f’) ((/TH. 61 H). — (FIH. o1 (H) )y

—JQSIﬂ¢(<(f[H, U]U>* - (f[Ha U])*(“)*) Xy

Functional differentiation of (46) with respect to the functigngives thers saddle-point
equation

D(g, h) = «((S[h - H]8§,0>*»xy (48)
which implies, as expected, the general relation

((f[H, o) Dy = (f[H, o])D.

Differentiation of (46) with respect to the parametgysm, u, Ro, Q, ¢} and repeated usage
of the above bookkeeping identities gives the remaimegaddle-point equations:

m={o)p (49)
g = (o)) (50)
2J2Ro(1— q)* = (o (H — Jom — 0))p — ({0){H — Jom — 0), )y (51)
2J%(1— )[Ro(1+ q) + Q/q co2¢)] = (o (H — Jom — 0))p (52)
J
w+ JoRom = To_q)(h’ — Jom —0)p (53)
J%q — J*(1 — @)[Q? + 49 RS + BQRo\/q €OS2¢)] + ((H — Jom — 0)%)p
1
= T ~ Jom = 0)%). = (H = Jom = 0)2).. (54)

We now use the&s ansatz to perform the — O limit in the flow term.A (33) of our
diffusion equation (17). Note that, due to— 0, we may deal with averages over the
original measureM which involve two replica indices (such as those encountered in (33)
in the following way:

(f[Ha, 0a]g[Hgp, 0p])m — Sap(f[H, 01g[H, 0])p + (1 = Sup) ((f[H, 0])(g[H. o]):)xy-
With this identity we can work out (33). We use the short-hghgg cog2¢) = (1—q) R,
and find after some bookkeeping and some re-arranging of terms:
(1= @)*Arsls, h; D] = (2g — 1)D(s, h)

x[(h — Jom — 6)(tanh(BH)o)p + s{tanh(BH)(H — Jom — 0))p]

—qD (s, W[(h — Jom — O)((tanN(BH)). (0 ) ) xy

+s((tanh(BH)).(H — Jom — ). )]

+26J%(1 = q)*D(s, h)

x[(R1 + Ro){tanh(BH)o)p — Ri{({tanh(BH)).(0)4))xy]

+{((8[h — H]d¢ o) (H — Jom — 6)4))xy

x[(({tanh(BH))+ (o)) xy — g (tanh(BH)o) p]

+((8[h — H]d¢ 0)4(0 ) Dxy

x[(({tanh(BH)).(H — Jom — 0), )y — g{tanh(BH)(H — Jom — 0)) p]

+2J%(L = @)*(O1h — H]3¢.0)u{0) Dy

x[(R1 — Ro){((tanh(BH)).(0)+))xy — Ri(tanh(BH)o) p]. (55)

In the RS approximation the evolution of the joint spin-field distribution is described by
equation (17), in which the disorder-induced terris given by (55). Evaluation a4, in
turn, requires solving the set of saddle-point equations (48)—(54), at each instance of time.
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4.2. TheaT instability

The de Almeida—Thoulessxx) instability [9] marks the instability of th&s solution of

the saddle-point equations to the so-called replicon mode. This leads to a second-order
transition away from th&s state to states with broken replica symmewgg). Unlike the
standard equilibrium calculations, we here have to worry about replicon fluctuations with
respect to three replica matrices:

Gup = 4 +84ep  8Gua =0 Zs%ﬂ = Z«Sqaﬁ =0
Qup > ORS5+800p  6Qua =0 Z(SQW—Z(SQW;—O (56)
Rop — RES + 18R SRyq =0 ZaRaﬁ_ZaRﬂ_o

With 8geg = 89pa, 8Qup = 8Q0p, and SR,z = 6SRg,. As usual the replicon

fluctuations satisfy convenient matrix commutation relations, likg,[8q] = [Qrs, Q] =

[Rrs, §R] = 0. TheAT instability corresponds to a zero eigenvalue in the spectrum of the

Hessian (i.e. the matrix of second derivativesNoft thers saddle-point. However, since

the R,p are conjugate order parameters, acquiring an imaginary value, the naive picture of

this zero eigenvalue signalling the bifurcation of a local maximum, need not be true. We can

avoid all such subtleties by following the alternative procedure: to consiefiuctuations

only after elimination of the conjugate order parametRgg with equation (31). This is

equivalent to first working out the variation ¥ (26) for the case where all fluctuations

(56) are independent, followed by a projection onto the subspace defined by (31).
Expansion of (26) around thes saddle point, the first non-trivial order of which must

by definition be quadratic in the replicon fluctuations, gives

1 2 1 2 2 2 2
W= Wrs= J(GP)y + 5 §5Qaﬁ5Qaﬁ_J gmaﬁ—l R0;5Raﬁ5%ﬂ

+% ;56155 [2(1 - o2 3R JZ.(ll_qﬁ«mZ)* - <H>f>>xy]
+0(8% (57)
with
(H — Jom — ) - q(H — Jom. — )
2771 - q)?

1
G — _5120 -[8Q + 2RoSR — R28qlo +

o [8R — Rodq](H — Jom — 0)
l1-g¢g '

In order to evaluate the term in (57) that involv@s we note that irrs saddle-points and
for indicesa # g andy # A:

(fagphyki)m = BaySpa (S h)u(gk)x + (f ) (g)u(
(1) (@)« k) — (K< ()N xy
+8M5ﬁy<(<fk)*<gh>*+( )+
—(fh)x(g)ulh)s — (gh)s(f)

+ terms with less than twé’s.
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Only the terms with two Kronecker's can contribute t4G?),, due to the specific properties
of the replicon fluctuations. We now obtain

1 1

é<G2>M = 21J“«[l —(0)2) 2y ;j[agaﬂ + 2R08 Rup — R28Gup)?

1 2 212
+ it = g LD = (D2

X Z quﬁ
ap

1 I ,
o gy W~ @ RINHD. — (H)]
+{o H)u = (0)2{H)W ] ay
X Y [8Rup — Rodqap]®

op

T21— gy ([l H)y — (o) (H) )P ay

%> 8qupl8 Qup + 2R08 Rup — R3qup]
af
J2
;- (@)l H)u — (o) {H)]xy
—-q

x Y [8Rap — R03qapl[8 Qup + 2R08 Rup — R3Sup]
ap

1
m«[(oHL — (o) (H)J[(H?)\ — (H)2]) 2y

X quaﬁ [(SROlﬂ - RO‘SQaﬂL
of

+

The various combinations of matrix fluctuations can be somewhat disentangled by
introducing the transformation

R 2 1
— 2 0 —

In addition this renders all fluctuations dimensionless. Expression (57) now acquires the
form

Skagp Skagp

W— Wps= Y (3%,3) M (5%,3) + 083 (58)
op 8}"“/3 (Sl’aﬁ

in which the entries of the symmetricx33 matrix M are

M= ([1 = (0)])y

1 1 2
M= My = é - m«[(gfn* - (U)*<H)*] »xy
Mis = May = — (1 = @10 ). = (@t H DDy
1 (H?), — (H)?_, 202
My = 4(:qu)z«[l - W] ey — J°RG
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1
2J3(1—¢q)3
=¥«[1—<o>2][<112> — (H)] 4+ [(0 H)\ — (0)2(H) ]2y — L. (59)

2]2(1 _ q)z * * * * * *| Nxy

We now use (31) to eliminate the conjugate order param&gyérom our equations. In the
space ofks saddle-points and replicon fluctuations we satid®; §] = 0, so equation (31)
simplifies to

M3 = M3z = ([{o H)w — (o) (H)[(H?)s = (H)2])xy — 27 Ro

Ms33

i
2J2
which after some algebra translates into the following constraint on the replicon fluctuations

(qR)op = ((Hy — Jom — 0)og)m
M316k + M326q + M33z5r = 0.

The stability of thers saddle-point against replicon fluctuations is now controlled by a
symmetric 2x 2 matrix M:

o Skap \+r( Skap .
Yo WRs= Z(5qaﬂ>M<5qaﬂ> O

op
1 0
(3 ;gu;gss)M( 0 1 )
32/ 783 —M31/Ms3s —Ms3p/Ms3
_ ( My — M?2,/Msz Mo — M13M32/M33) (60)
My — M1gMzo/Msz My — M3,/Maz )

Due to the curvature sign change of the second derivativg,ahe analytic continuation
to n — 0 of the saddle-point that maximizes for n > 1, will minimize ¥ for n < 1.
This is emphasized explicitly by the summation ouér — 1) non-trivial terms (all index
combinations withe # 8) in (58). We can conclude that the instability occurs when the
largest eigenvalue of the matrid is zero.

4.3. Equilibrium

From our previous result, the confirmation that the gen&ss)(thermodynamic equilibrium
state is a stationary state of our flow equation (17), it follows that the same must hold within
the RS ansatz. We will now show this explicitly, as a non-trivial consistency test (rather
than a new result). The previous ansatz (34) translates into

x(o, H) = exp[3Bo (H + 0)]. (61)

Due to (61) the measur#frs in (46) becomes a Gaussian function of the fields, which
enables us to perform the field integrals and work outRbaaddle-point equations (49)—
(54). The result is:

p=3BJom Q=0 Ro=3p (62)
m = / Dz tanhB(Jom + 6 + Jz./q) (63)
qg= / Dz tantf B(Jom + 6 + J2./q) (64)

which are the familiars equilibrium saddle-point equations, as first obtained in [2].
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We now turn to the right-hand side of equation (17). SimZze= O the original two
Gaussian variableé, y) in (46) are replaced by a single ong, With (61) and (36) we
can simplify the effective measurdrs (47), as in the fullRss case, leading to

((flo. HD(glow HDsDxy — /Dz (flo. H]).(glo. H]).

(flo, H)x = I:Zexp{ﬂo[lom +6+ Jz./q]}

x/Dwf[U, Jom+9+Jw,/1—q+JZ\/31+/3]20(1—q)]]

x[2 coshB[Jom + 6 + Jz./ql] .
In particular:
explBch — 38202(1 = q) — 5= h — Jom — 6 — Jz/q]%)
2J /21 (1— q) coshB[Jom + 6 + Jz./q]

The dependence of (65) anonly through a factor &” immediately ensures that the first
two terms in the diffusion equation (17) cancel. Since this happens even before we carry
out the Gaussian average, we may write

(8[h — H]8¢0)s = 3[1 + ¢ tanh(BR)] D (h; 2)
implying relations like

(of (H)), = (tanh(BH) f (H))x-
The building blocks of (55) thereby become

(o), =tanhB[Jom + 6 + Jz./q]

(H — Jom — 0), = BJ*(L = q)(0). + Jz /g

/ Dz (tanh(BH)). (o). = ¢

/ Dz (tanBH)(H — Jom — 0)), = BJ23(1 — ¢?).

We will also need the following identity, obtained by partial integration aver

(8[h - H]ag,a>* = (65)

Dz (tanhBH)).(H — Jom — 0), = 28J%q(1 — q)

/Dz z(8[h — H]é¢ o) = ?D(g, h)(h — Jom — 0)

_BIJIA—q) / Dz (8[h — H]3¢.0)e(0).. (66)

We now have the necessary tools to analyse with minimum effort the complicated terms
in our diffusion equation, given the ansatz (61). The combined flow terms in (17) can be
simplified to

D(s., h)(h — Jom — 0)D(g, h) + Ardls. h: D] = [1 — (tanf (B H)) ]

1- 2
I:ZLID(S‘7 h)(h — Jom — 0) — ﬂst‘D(g, h) + zﬂ_.]q

(1—¢q)?
Ja./q
X / Dz (8[h — H]‘Sg,a>*<0>* + 1-— q)Z

Dz z{8[h — H]Sgﬁg){|.
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In order to evaluate the diffusion term in (17) we calculate the field derivative @f &),
using (65):

—Jom—9

0 h J
J2—D(c,h) = BJ?cD(s, h) — Dic.my+ V2 / Dz z(8[h — H]Sc o).
oh l—g 1—g

The full right-hand side of (17) can now be written as

q
(1—¢q)?

qBJ?
[1 — (tanfF(BH))p] [1_6] / Dz (8[h — H]b¢.6)u(0)s — D(g, h)(h — Jom — 0)
IV
(1—g)?

(by virtue of the identity (66)). Th&s equilibrium state obtained in [2] therefore defines a
stationary state of ours diffusion equation (17), (55).

Finally we turn to thex instability, which we found to occur when the largest eigenvalue
of the matrix M (60) is zero. We can use the various identities, derived for the thermal
equilibrium state, to simplify the matrix elements B considerably:

Vo — -1 ( A 3[1 — (BJ)2A] >
ST 280028 — 1\ 21— (BN2A]  L(BIHL - (BJ)?A]

+

/Dz Z{8[h — H](Sg,a)*} =0

with
A= / Dz cosh B[Jom + 6 + Jz./q].

The AT instability, as calculated within equilibrium statistical mechanics [9], occurs at
(BJ)2A = 1. Substitution of this condition into our expression Weq immediately leads

to the desired result: the two eigenvaluesMfe, are {—A, 0}, so the two conditions for
the AT instability coincide.

5. Comparison with simulations

In order to verify the predictions of our theory we here compare the results of solving
numerically the (macroscopic) diffusion equation (17), in which the disorder-generated
term A is calculated within thers ansatz (55), with the results of performing numerical
simulations of the discretized version of the underlying microscopic stochastic dynamics
(2), (3). Solving the diffusion equation (17), requires making a discretization not only of
time, but also of the joint spin-field distribution, i.e. replace the two continuous functions
D,(£1, h) by two histograms. Furthermore, at each time-step we have to solvesthe
saddle-point equations (48)—(54), which involve nested Gaussian integrations. It will be
clear that the solution of equation (17) requires a significant computational effort, even
within the RS ansatz, which is reflected in the scope of the experiments described in this
paper. We restrict ourselves to describing the evolution of the system in zero external field
(6 = 0), following initial states with individual spin states chosen independently at random,
given a required initial magnetization. Following the various experimental protocols that
show spin-glass ageing phenomena, such as relaxation following cooling in a small field, and
relaxation with intermittent temperature increases or decreases, we consider to be beyond
the scope of this paper.



Order-parameter flow in thek spin-glass: II 781

5.1. Transients

First we study the relaxation of the system on short time-scales. We measure as a function of
time the magnetizatiom, the energy per spi&, and the two distribution®,(£+1, #). Note

that the full local field distributiorD, (h) is just the sunD, (1, h)+D,(—1, h). The numerical
simulations were carried out with systems®f= 8000 spins, following randomly drawn

initial states. The results of confronting our theory with typical simulation experiments, for
relaxations atl’ = 0, are shown in figures 1 and 2, fdg = O (left pictures) and/; = 1

(right pictures). In figure 1 the top graphs represent the magnetizatiand the bottom
graphs represent the energy per spirfor the two initial conditionsny = 0 andmg = 0.3.

Figure 2 shows the corresponding distributianéo, /) for one particular choice of initial

state O,(1, h): upper graph inr = 0 window, right graph irr > 0 windows; D,(—1, h):

lower graph int = 0 window, left graph irr > 0 windows). ForJy = 1 we were unable

to calculate the solution of equation (17) uprte= 6, due to the critical behaviour of the
saddle-point equations (48)—(54). In figures 3 and 4 we show similar relaxation results
for T = 1. As expected, at higher temperatures the two distributidonis1, 4) acquire a

shape which becomes more like a Gaussian one, whereas in the low-temperature regime the
deviations from a Gaussian shape become important.

T ] T l ¥ T l ¥ ' T

05— - 05} —

L ] ] ] 13 i ] i I L

¢ 4

Figure 1. Evolution at7T = 0 of the magnetizatiom and the energy per spifs, for Jo = 0
(left) andJo = 1 (right): full curves, numerical simulations witii = 8000; dotted curves, result
of solving thers diffusion equation.

To emphasize the increase in accurateness obtained by the present advanced version of
our theory, as opposed to the simple two-parameter theory of [1], we show in figure 5 the
simulation data and the predictions of the two versions of our theory (simple as opposed
to advanced) corresponding to a relaxation from a random initial state gwitl: 0), for
T = Jo = 0. The failure of the two-parameter theory to account for the typical slowing
down of the dynamics appears to have been amended convincingly by choosing as the
dynamic object the full distributiorD, (o, k), rather than just the magnetization and the
energy per spin. Since the solution of our diffusion equation (17), as depicted in figure 5, is
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Jo=1, my=0.0
0.40 0.40 T T T T T T T
0.0 = 0.0
—4 -2 0 2 4 -4 2 o 2 4
0.40 T [ T T Y T T 0.40 T T T T T T T
o t=2 t=2
b" B | L 4
N
Q
0.0 L l 1 00 | | |
~4 -2 4] 2 4 -4 -2 0 2 4
0.40 , T T T T T T 0-40‘ T T T T T T T
t=4 t=4
0.0 | | | 0.0 | |
~4 -2 V] 2 4 -4 -2 0 2 4

Figure 2. Evolution at7 = 0 of the two field distribitionsD; (o, ), for Jo = 0 (left) and
Jo = 1 (right): histograms, numerical simulations with= 8000; full curves, result of solving
the rs diffusion equation.

obtained within thers ansatz, this slowing down of the dynamics is not caused by replica
symmetry breaking.

5.2. Relaxation near the spin-glass transition

One way in which we can complement the short-time results presented so far, whilst avoiding
having to solve the saddle-point problem (48)—(54) for large times, is to consider the
dynamics in they = 0 (paramagnetic) region. This allows us to investigate the relaxation
nearJo = 0, T = 1 (the critical point which marks th¢ — SG transition). In the
paramagnetic region thes saddle-point problem can be solved,

g=m=R =0  J’Ro=(ocH)p THQ? = ((H)2).y

*

and the diffusion equation can be expressed entirely in terms of (averages over) the
distribution D, (¢, k) itself. Upon also making use of the invariance of the problem with
respect to an overall spin sign change, we can whité;, #) in terms of a single function,

the symmetric part of which is proportional to the local field distribution:

D(s, h) = 3F(ch) (floH))p = /dyF(y)f(y) = (fOr.

In terms of F, the diffusion equation (17) becomes

d
o5 Fito = 311+ tanh(Bx)] F, (—x) — 3[1 — tanh(Bx)] F; (x)
2

0 0
+J2[1 — (anh(By)) r]o 5 Fr(x) + (R (0L — (@nhBy) r]
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Figure 3. Evolution at7T = 1 of the magnetizatiom and the energy per spifi, for Jo = 0
(left) and Jo = 1 (right): full curves, numerical simulations witN = 8000; dotted curves,
result of solving thers diffusion equation.

+(y)F, (tanh(By))r, — (ytanh(By)) £ ]} (67)
A randomly drawn initial state corresponds to

1 1.2 2
— T a3 /J

Fo(x) Jme .
Since (67) is relatively easy to iterate numerically, we can now compare the theoretical
predictions with the numerical data over much larger time-scales. In figure 6 we compare
the result of solving (67) with numerical simulations, fore [0, 500], in terms of the
energy per spirtk = —%(y)p,. We observe again a satisfactory agreement between theory
and experiment.

6. Discussion

The present paper is the second in a series of papers in which we systematically develop
a dynamical replica theory to describe the evolution of macroscopic observables in the
Sherrington—Kirkpatrick [2] spin-glass. Our procedure for obtaining closed macroscopic
flow equations is based on two assumptions: (i) the flow equations are self-averaging with
respect to the realization of the disorder, at any time; and (ii) we may assume equipartitioning
of probability in the macroscopic sub-shells of the ensemble. The procedure can be shown
to beexact if the set of macroscopic observables to which it is applied indeed obeys closed
dynamic equations. The resulting closed flow equations involve a saddle-point problem, to
be solved at each instance of time, formulated in the replica language.
In our previous paper [1] the closure procedure was applied to the obserwalzled

E (the magnetization and the energy per spin), resulting in a two-parameter dynamical
theory. Here we have shown how the same procedure can be succesfully applied to the
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15=0, my=0.3 Jo=1, me=0.3
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Figure 4. Evolution at7 = 1 of the two field distribitionsD; (o, ), for Jo = 0 (left) and
Jo = 1 (right): histograms, numerical simulations with= 8000; full curves, result of solving
the rs diffusion equation.

Figure 5. Comparison of simulations\M = 8000, full curve), the simple two-parameter theory
(rRs stable, dotted curvers unstable, broken curve) and the advanced theory (full curve), for
T = Jo = 0. Note that the two full curves are almost on top of each other at the scale shown.

joint spin-field distributionD(¢, /), resulting in a dynamical theory describing an infinite
number of macroscopic order parameters. The present, advanced, version of our theory
is again by construction exact for short times, in equilibrium, and in the limit where the
disorder is removed. Furthermore, since the joint spin-field field distribution specifies the
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Figure 6. Relaxation of the energy per spifi for Jo = 9 = 0 andT < {1.0,1.1, 1.2}: dots,
numerical simulations witlv = 3200; curves, results of solving tes diffusion equation.

underlying microscopic states in much more detail than would be the case by specifying
only the energy and the magnetization (i.e. more microscopic memory effects are being
taken into acount), the equipartitioning assumption has become much weaker. We have
restricted our analysis of the saddle-point equations by making the replica-symrms}ric (
ansatz. On the time-scales considered in our simulation experiments, the agreement between
advancedrs theory and experiment is quite satisfactory. For example, the slowing down
missed by the two-parameter theory is now well accounted for, and the theory describes
correctly the relaxation near the spin-glass transition. At this stage we need more efficient
numerical procedures in order to extend the time-scales for which we can solve explicitly the
analytical macrodynamic equations (17) ff. This would enable us to compare, for instance,
with data such as the ones in [10], to investigate the possible existence of stationary states
other than the one corresponding to thermal equilibrium, and to see whether the theory
can describe the typical ageing phenomena observed in numerical simulations of similar
mean-field spin-glass models [11].

A next stage of our programme will be to investigate for the Sherrington—Kirkpatrick
spin-glass the effects of replica symmetry breaking on the dynamic equations [6]. Although
technically non-trivial, it is a straightforward generalization of the formalism developed so
far.

Finally, a relevant question which we have not yet been able to answer is whether our
diffusion equation (17), (33) is exact (for infinitely large systems and on finite time-scales).
There are several approaches to this problem, each of which we plan to investigate in the
near future. The first approach is to apply our formalism to those disordered spin systems
for which the dynamics has been solved by other means, like the non-symsietriodel
(in which each of the bonds is drawn independently and asymmetrically at random [12, 13];
preliminary results of this study can be found in [14]), a toy model used in analysing the
shortcomings of the previous two-parameter approach [15], or the spherical spin-glass [16].
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By definition, however, such exercises would not yet prove exactness in the casesaf the
spin-glass. The second approach would be to try to derive a diffusion equation for the joint
spin-field distribution, starting from the equations for correlation and response functions,
as obtained from the path-integral formalism [5]. The latter approach involves (rather
complicated) closed equations for two functiofi&, ') and R(z, t'), with two real-valued
arguments each (two times). The present formalism also involves two fundiigish)
andD,(—1, k), with two real-valued arguments each (one time and one field). It is therefore
quite imaginable that both formalisms constitute exact discriptions of the dynamics of the
SK model.
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